ﻻ يوجد ملخص باللغة العربية
We demonstrate experimentally an air-slot mode-gap photonic crystal cavity with quality factor of 15,000 and modal volume of 0.02 cubic wavelengths, based on the design of an air-slot in a width-modulated line-defect in a photonic crystal slab. The origin of the high Q air-slot cavity mode is the mode-gap effect from the slotted photonic crystal waveguide mode with negative dispersion. The high Q cavities with ultrasmall mode volume are important for applications such as cavity quantum electrodynamics, nonlinear optics and optical sensing.
We measure the dynamics of the thermo-optical nonlinearity of both a mode-gap nanocavity and a delocalized mode in a Ga$_{mathrm{0.51}}$In$_{mathrm{0.49}}$P photonic crystal membrane. We model these results in terms of heat transport and thermo-optic
We investigate the use of guided modes bound to defects in photonic crystals for achieving double resonances. Photoluminescence enhancement by more than three orders of magnitude has been observed when the excitation and emission wavelengths are simu
We present a design methodology and analysis of a cavity optomechanical system in which a localized GHz frequency mechanical mode of a nanobeam resonator is evanescently coupled to a high quality factor (Q>10^6) optical mode of a separate nanobeam op
Interest in photonic crystal nanocavities is fueled by advances in device performance, particularly in the development of low-threshold laser sources. Effective electrical control of high performance photonic crystal lasers has thus far remained elus
We show that global lower bounds to the mode volume of a dielectric resonator can be computed via Lagrangian duality. State-of-the-art designs rely on sharp tips, but such structures appear to be highly sub-optimal at nanometer-scale feature sizes, a