ﻻ يوجد ملخص باللغة العربية
The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, where a proton is knocked-out of the nucleus with high momentum transfer and high missing momentum, show that in 12C the neutron-proton pairs are nearly twenty times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.
The way to create and to investigate a dense cold matter droplets in the laboratory is proposed. The reality of this approach are argued. Estimated possible statistic is large enough for detail study of the properties of such a matter. Mechanism of k
Laboratory experiments with high-energetic heavy-ion collisions offer the opportunity to explore fundamental properties of nuclear matter, such as the high-density equation-of-state, which governs the structure and dynamics of cosmic objects and phen
We study dense nuclear matter and the chiral phase transition in a SU(2) parity doublet model at zero temperature. The model is defined by adding the chiral partner of the nucleon, the N, to the linear sigma model, treating the mass of the N as an un
The production and propagation of kaons and antikaons has been studied in symmetric nucleus-nucleus collisions in the SIS energy range. The ratio of the excitation functions of K^+ production in Au+Au and C+C collisions increases with decreasing beam
Results on low-mass dileptons, covering the very broad energy range from the BEVALAC up to SPS are reviewed. The emphasis is on the open questions raised by the intriguing results obtained so far and the prospects for addressing them in the near futu