ترغب بنشر مسار تعليمي؟ اضغط هنا

Exotic in dense and cold nuclear matter

200   0   0.0 ( 0 )
 نشر من قبل Konstantin Mikhailov R.
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف K. Mikhailov




اسأل ChatGPT حول البحث

The way to create and to investigate a dense cold matter droplets in the laboratory is proposed. The reality of this approach are argued. Estimated possible statistic is large enough for detail study of the properties of such a matter. Mechanism of kinematical cooling of the droplet is clarified. Different types of trigger(selection criteria) are proposed to search for different kind of exotic.



قيم البحث

اقرأ أيضاً

The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, where a proton is knocked-out of the nucleus with high momentum transfer and high missing momentum, show that in 12C the neutron-proton pairs ar e nearly twenty times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.
We study cold nuclear matter based on the holographic gauge theory, where baryons are introduced as the instantons in the probe D8/D8 branes according to the Sakai-Sugimoto model. Within a dilute gas approximation of instantons, we search for the sta ble states via the variational method and fix the instanton size. We find the first order phase transition from the vacuum to the nuclear matter phase as we increase the chemical potential. At the critical chemical potential, we could see a jump in the baryon density from zero to a finite definite value. While the size of the baryon in the nuclear matter is rather small compared to the nucleus near the transition point, where the charge density is also small, it increases with the baryon density. Those behaviors obtained here are discussed by relating them to the force between baryons.
A three-dimensional effective lattice theory of Polyakov loops is derived from QCD by expansions in the fundamental character of the gauge action, u, and the hopping parameter, kappa, whose action is correct to kappa^n u^m with n+m=4. At finite baryo n density, the effective theory has a sign problem which meets all criteria to be simulated by complex Langevin as well as by Monte Carlo on small volumes. The theory is valid for the thermodynamics of heavy quarks, where its predictions agree with simulations of full QCD at zero and imaginary chemical potential. In its region of convergence, it is moreover amenable to perturbative calculations in the small effective couplings. In this work we study the challenging cold and dense regime. We find unambiguous evidence for the nuclear liquid gas transition once the baryon chemical potential approaches the baryon mass, and calculate the nuclear equation of state. In particular, we find a negative binding energy per nucleon causing the condensation, whose absolute value decreases exponentially as mesons get heavier. For decreasing meson mass, we observe a first order liquid gas transition with an endpoint at some finite temperature, as well as gap between the onset of isospin and baryon condensation.
We study dense nuclear matter and the chiral phase transition in a SU(2) parity doublet model at zero temperature. The model is defined by adding the chiral partner of the nucleon, the N, to the linear sigma model, treating the mass of the N as an un known free parameter. The parity doublet model gives a reasonable description of the properties of cold nuclear matter, and avoids unphysical behaviour present in the standard SU(2) linear sigma model. If the N is identified as the N(1535), the parity doublet model shows a first order phase transition to a chirally restored phase at large densities, $rho approx 10 rho_0$, defining the transition by the degeneracy of the masses of the nucleon and the N. If the mass of the N is chosen to be 1.2 GeV, then the critical density of the chiral phase transition is lowered to three times normal nuclear matter density, and for physical values of the pion mass, the first order transition turns into a smooth crossover.
The low-energy neutron-Sigma^- interactions determine, in part, the role of the strange quark in dense matter, such as that found in astrophysical environments. The scattering phase shifts for this system are obtained from a numerical evaluation of t he QCD path integral using the technique of Lattice QCD. Our calculations, performed at a pion mass of m_pi ~ 389 MeV in two large lattice volumes, and at one lattice spacing, are extrapolated to the physical pion mass using effective field theory. The interactions determined from QCD are consistent with those extracted from hyperon-nucleon experimental data within uncertainties, and strengthen theoretical arguments that the strange quark is a crucial component of dense nuclear matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا