ترغب بنشر مسار تعليمي؟ اضغط هنا

Identifying the Young Low-mass Stars within 25 pc. I. Spectroscopic Observations

134   0   0.0 ( 0 )
 نشر من قبل Evgenya Shkolnik
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Evgenya Shkolnik




اسأل ChatGPT حول البحث

We have completed a high-resolution (R=60,000) optical spectroscopic survey of 185 nearby M dwarfs identified using ROSAT data to select active, young objects with fractional X-ray luminosities comparable to or greater than Pleiades members. Our targets are drawn from the NStars 20-pc census and the Moving-M sample with distances determined from parallaxes or spectrophotometric relations. Nearly half of the resulting M dwarfs are not present in the Gliese catalog and have no previously published spectral types. We identified 30 spectroscopic binaries (SBs) from the sample, which have strong X-ray emission due to tidal spin-up rather than youth. This is equivalent to a 16% spectroscopic binary fraction, with at most a handful of undiscovered SBs. We estimate upper limits on the age of the remaining M dwarfs using spectroscopic youth indicators such as surface gravity-sensitive indices (CaH and K I). We find that for a sample of field stars with no metallicity measurements, a single CaH gravity index may not be sufficient, as higher metallicities mimic lower gravity. This is demonstrated in a sub-sample of metal-rich RV standards, which appear to have low surface gravity as measured by the CaH index, yet show no other evidence of youth. We also use additional youth diagnostics such as lithium absorption and strong H-alpha emission to set more stringent age limits. Eleven M dwarfs with no H-alpha emission or absorption are likely old (>400 Myr) and were caught during an X-ray flare. We estimate that our final sample of the 144 youngest and nearest low-mass objects in the field is less than 300 Myr old, with 30% of them being younger than 150 Myr and 4 very young (<10 Myr), representing a generally untapped and well-characterized resource of M dwarfs for intensive planet and disk searches.

قيم البحث

اقرأ أيضاً

We present a large-scale, volume-limited companion survey of 245 late-K to mid-M (K7-M6) dwarfs within 15 pc. Infrared adaptive optics (AO) data were analysed from the Very Large Telescope, Subaru Telescope, Canada-France-Hawaii Telescope, and MMT Ob servatory to detect close companions to the sample from $sim$1 au to 100 au, while digitised wide-field archival plates were searched for wide companions from $sim$100 au to 10,000 au. With sensitivity to the bottom of the main sequence over a separation range of 3 au to 10,000 au, multiple AO and wide-field epochs allow us to confirm candidates with common proper motions, minimize background contamination, and enable a measurement of comprehensive binary statistics. We detected 65 co-moving stellar companions and find a companion star fraction of $23.5 pm 3.2$ per cent over the 3 au to 10,000 au separation range. The companion separation distribution is observed to rise to a higher frequency at smaller separations, peaking at closer separations than measured for more massive primaries. The mass ratio distribution across the $q = 0.2 - 1.0$ range is flat, similar to that of multiple systems with solar-type primaries. The characterisation of binary and multiple star frequency for low-mass field stars can provide crucial comparisons with star forming environments and hold implications for the frequency and evolutionary histories of their associated disks and planets.
We present results of the largest, most comprehensive study ever done of the stellar multiplicity of the most common stars in the Galaxy, the red dwarfs. We have conducted an all-sky, volume-limited survey for stellar companions to 1120 M dwarf prima ries known to lie within 25 pc of the Sun via trigonometric parallaxes. In addition to a comprehensive literature search, stars were explored in new surveys for companions at separations of 2 to 300. A reconnaissance of wide companions to separations of 300 was done via blinking archival images. I-band images were used to search our sample for companions at separations of 2 to 180. Various astrometric and photometric methods were used to probe the inner 2 to reveal close companions. We report the discovery of 20 new companions and identify 56 candidate multiple systems. We find a stellar multiplicity rate of 26.8 +/- 1.4% and a stellar companion rate of 32.4 +/- 1.4% for M dwarfs. There is a broad peak in the separation distribution of the companions at 4 -- 20 AU, with a weak trend of smaller projected linear separations for lower mass primaries. A hint that M dwarf multiplicity may be a function of tangential velocity is found, with faster moving, presumably older, stars found to be multiple somewhat less often. We calculate that stellar companions make up at least 17% of mass attributed to M dwarfs in the solar neighborhood, with roughly 11% of M dwarf mass hidden as unresolved companions. Finally, when considering all M dwarf primaries and companions, we find that the mass distribution for M dwarfs increases to the end of the stellar main sequence.
As part of our search for new low-mass members of nearby young moving groups (YMG), we discovered three low-mass, spectroscopic binaries, two of which are not kinematically associated with any known YMG. Using high-resolution optical spectroscopy, we measure the component and systemic radial velocities of the systems, as well as their lithium absorption and H$alpha$ emission, both spectroscopic indicators of youth. One system (2MASS J02543316-5108313, M2.0+M3.0) we confirm as a member of the 40 Myr old Tuc-Hor moving group, but whose binarity was previously undetected. The second young binary (2MASS J08355977-3042306, K5.5+M1.5) is not a kinematic match to any known YMG, but each component exhibits lithium absorption and strong and wide H$alpha$ emission indicative of active accretion, setting an upper age limit of 15 Myr. The third system (2MASS J10260210-4105537, M1.0+M3.0) has been hypothesized in the literature to be a member of the 10 Myr old TW Hya Association (TWA), but with our measured systemic velocity, shows the binary is in fact not part of any known YMG. This last system also has lithium absorption in each component, and has strong and variable H$alpha$ emission, setting an upper age limit of 15 Myr based on the lithium detection.
In the Gaia era, the majority of stars in the Solar neighbourhood have parallaxes and proper motions precisely determined while spectroscopic age indicators are still missing for a large fraction of low-mass young stars. In this work we select 756 ov erluminous late K and early M young star candidates in the southern sky and observe them over 64 nights with the ANU 2.3m Telescope at Siding Spring Observatory using the Echelle (R=24,000) and Wide Field spectrographs (WiFeS, R=3000-7000). Our selection is kinematically unbiased to minimize the preference against low-mass members of stellar associations that dissipate first, and to include potential members of diffuse components. We provide measurements of H$alpha$ and calcium H&K emission, as well as lithium absorption line, that enable identification of stars as young as $sim$10-30 Myr which is a typical age of a stellar association. We report on 346 stars showing a detectable lithium line, 318 of which are not found in the known catalogs of young stars. We also report 126 additional stars in our sample which have no detectable lithium but signs of stellar activity indicating youth. Radial velocities are determined for WiFeS spectra with a precision of 3.2 $mathrm{km;s^{-1}}$ and 1.5 $mathrm{km;s^{-1}}$ for the Echelle sample.
Asteroseismology of 1.0-2.0 Msun red giants by the Kepler satellite has enabled the first definitive measurements of interior rotation in both first ascent red giant branch (RGB) stars and those on the Helium burning clump. The inferred rotation rate s are 10-30 days for the ~0.2Msun He degenerate cores on the RGB and 30-100 days for the He burning core in a clump star. Using the MESA code we calculate state-of-the-art stellar evolution models of low mass rotating stars from the zero-age main sequence to the cooling white dwarf (WD) stage. We include transport of angular momentum due to rotationally induced instabilities and circulations, as well as magnetic fields in radiative zones (generated by the Tayler-Spruit dynamo). We find that all models fail to predict core rotation as slow as observed on the RGB and during core He burning, implying that an unmodeled angular momentum transport process must be operating on the early RGB of low mass stars. Later evolution of the star from the He burning clump to the cooling WD phase appears to be at nearly constant core angular momentum. We also incorporate the adiabatic pulsation code, ADIPLS, to explicitly highlight this shortfall when applied to a specific Kepler asteroseismic target, KIC8366239. The MESA inlist adopted to calculate the models in this paper can be found at url{https://authorea.com/1608/} (bottom of the document).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا