ترغب بنشر مسار تعليمي؟ اضغط هنا

Pulsation in carbon-atmosphere white dwarfs: A new chapter in white dwarf asteroseismology

221   0   0.0 ( 0 )
 نشر من قبل Patrick Dufour
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present some of the results of a survey aimed at exploring the asteroseismological potential of the newly-discovered carbon-atmosphere white dwarfs. We show that, in certains regions of parameter space, carbon-atmosphere white dwarfs may drive low-order gravity modes. We demonstrate that our theoretical results are consistent with the recent exciting discovery of luminosity variations in SDSS J1426+5752 and some null results obtained by a team of scientists at McDonald Observatory. We also present follow-up photometric observations carried out by ourselves at the Mount Bigelow 1.6-m telescope using the new Mont4K camera. The results of follow-up spectroscopic observations at the MMT are also briefly reported, including the surprising discovery that SDSS J1426+5752 is not only a pulsating star but that it is also a magnetic white dwarf with a surface field near 1.2 MG. The discovery of $g$-mode pulsations in SDSS J1426+5752 is quite significant in itself as it opens a fourth asteroseismological window, after the GW Vir, V777 Her, and ZZ Ceti families, through which one may study white dwarfs.



قيم البحث

اقرأ أيضاً

145 - P. Dufour , J. Liebert , B. Swift 2009
Recently, Dufour et al. (2007) reported the unexpected discovery that a few white dwarfs found in the Sloan Digital Sky Survey had an atmosphere dominated by carbon with little or no trace of hydrogen and helium. Here we present a progress report on these new objects based on new high signal-to-noise follow-up spectroscopic observations obtained at the 6.5m MMT telescope on Mount Hopkins, Arizona.
At present, a large number of pulsating white dwarf (WD) stars is being discovered either from Earth-based surveys such as the Sloan Digital Sky Survey, or through observations from space (e.g., the Kepler mission). The asteroseismological techniques allow us to infer details of internal chemical stratification, the total mass, and even the stellar rotation profile. In this paper, we first describe the basic properties of WD stars and their pulsations, as well as the different sub-types of these variables known so far. Subsequently, we describe some recent findings about pulsating low-mass WDs.
Recent studies of the atmospheres of carbon-rich (DQ) white dwarfs have demonstrated the existence of two different populations that are distinguished by the temperature range, but more importantly, by the extremely high masses of the hotter group. T he classical DQ below 10000 K are well understood as the result of dredge-up of carbon by the expanding helium convection zone. The high-mass group poses several problems regarding their origin and also an unexpected correlation of effective temperature with mass. We propose to study the envelopes of these objects to determine the total hydrogen and helium masses as possible clues to their evolution. We developed new codes for envelope integration and diffusive equilibrium that are adapted to the unusual chemical composition, which is not necessarily dominated by hydrogen and helium. Using the new results for the atmospheric parameters, in particular, the masses obtained using Gaia parallaxes, we confirm that the narrow sequence of carbon abundances with Teff in the cool classical DQ is indeed caused by an almost constant helium to total mass fraction, as found in earlier studies. This mass fraction is smaller than predicted by stellar evolution calculations. For the warm DQ above 10000 K, which are thought to originate from double white dwarf mergers, we obtain extremely low hydrogen and helium masses. The correlation of mass with Teff remains unexplained, but another possible correlation of helium layer masses with Teff as well as the gravitational redshifts casts doubt on the reality of both and suggests possible shortcomings of current models.
White dwarf stars constitute the final evolutionary stage for more than 95 per cent of all stars. The Galactic population of white dwarfs conveys a wealth of information about several fundamental issues and are of vital importance to study the struct ure, evolution and chemical enrichment of our Galaxy and its components ---including the star formation history of the Milky Way. In addition, white dwarfs are tracers of the evolution of planetary systems along several phases of stellar evolution. Also, white dwarfs are used as laboratories for astro-particle physics, being their interest focused on physics beyond the standard model. The last decade has witnessed a great progress in the study of white dwarfs. In particular, a wealth of information of these stars from different surveys has allowed us to make meaningful comparison of evolutionary models with observations. While some information like surface chemical composition, temperature and gravity of isolated white dwarfs can be inferred from spectroscopy, and the total mass and radius can be derived as well when they are in binaries, the internal structure of these compact stars can be unveiled only by means of asteroseismology, an approach based on the comparison between the observed pulsation periods of variable stars and the periods predicted by appropriate theoretical models. The asteroseismological techniques allow us to infer details of the internal chemical stratification, the total mass, and even the stellar rotation profile. In this review, we first revise the evolutionary channels currently accepted that lead to the formation of white-dwarf stars, and then, we give a detailed account of the different sub-types of pulsating white dwarfs known so far, emphasizing the recent observational and theoretical advancements in the study of these fascinating variable stars.
Double white dwarf (double-WD) binaries may merge within a Hubble time and produce high-mass WDs. Compared to other high-mass WDs, the double-WD merger products have higher velocity dispersion because they are older. With the power of Gaia data, we s how strong evidence for double-WD merger products among high-mass WDs by analyzing the transverse-velocity distribution of more than a thousand high-mass WDs (0.8--1.3 $M_odot$). We estimate that the fraction of double-WD merger products in our sample is about 20 %. We also obtain a precise double-WD merger rate and its mass dependence. Our merger rate estimates are close to binary population synthesis results and support the idea that double-WD mergers may contribute to a significant fraction of type Ia supernovae.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا