ترغب بنشر مسار تعليمي؟ اضغط هنا

Pulsating white dwarfs: new insights

152   0   0.0 ( 0 )
 نشر من قبل Alejandro C\\'orsico
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

White dwarf stars constitute the final evolutionary stage for more than 95 per cent of all stars. The Galactic population of white dwarfs conveys a wealth of information about several fundamental issues and are of vital importance to study the structure, evolution and chemical enrichment of our Galaxy and its components ---including the star formation history of the Milky Way. In addition, white dwarfs are tracers of the evolution of planetary systems along several phases of stellar evolution. Also, white dwarfs are used as laboratories for astro-particle physics, being their interest focused on physics beyond the standard model. The last decade has witnessed a great progress in the study of white dwarfs. In particular, a wealth of information of these stars from different surveys has allowed us to make meaningful comparison of evolutionary models with observations. While some information like surface chemical composition, temperature and gravity of isolated white dwarfs can be inferred from spectroscopy, and the total mass and radius can be derived as well when they are in binaries, the internal structure of these compact stars can be unveiled only by means of asteroseismology, an approach based on the comparison between the observed pulsation periods of variable stars and the periods predicted by appropriate theoretical models. The asteroseismological techniques allow us to infer details of the internal chemical stratification, the total mass, and even the stellar rotation profile. In this review, we first revise the evolutionary channels currently accepted that lead to the formation of white-dwarf stars, and then, we give a detailed account of the different sub-types of pulsating white dwarfs known so far, emphasizing the recent observational and theoretical advancements in the study of these fascinating variable stars.



قيم البحث

اقرأ أيضاً

The Sloan Digital Sky Survey has allowed us to increase the number of known white dwarfs by a factor of five and consequently the number of known pulsating white dwarfs also by a factor of five. It has also led to the discovery of new types of variab le white dwarfs, as the variable hot DQs, and the pulsating Extremely Low Mass white dwarfs. With the Kepler Mission, it has been possible to discover new phenomena, the outbursts present in a few pulsating white dwarfs.
The unprecedented extent of coverage provided by Kepler observations recently revealed outbursts in two hydrogen-atmosphere pulsating white dwarfs (DAVs) that cause hours-long increases in the overall mean flux of up to 14%. We have identified two ne w outbursting pulsating white dwarfs in K2, bringing the total number of known outbursting white dwarfs to four. EPIC 211629697, with T_eff = 10,780 +/- 140 K and log(g) = 7.94 +/- 0.08, shows outbursts recurring on average every 5.0 d, increasing the overall flux by up to 15%. EPIC 229227292, with T_eff = 11,190 +/- 170 K and log(g) = 8.02 +/- 0.05, has outbursts that recur roughly every 2.4 d with amplitudes up to 9%. We establish that only the coolest pulsating white dwarfs within a small temperature range near the cool, red edge of the DAV instability strip exhibit these outbursts.
We report the discovery of four massive ($M > 0.8,M_odot$) ZZ Ceti white dwarfs, including an ultramassive $1.16,M_odot$ star. We obtained ground based, time-series photometry for thirteen white dwarfs from the Sloan Digital Sky Survey Data Release 7 and Data Release 10 whose atmospheric parameters place them within the ZZ Ceti instability strip. We detect mono-periodic pulsations in three of our targets (J1053, J1554, and J2038) and identify three periods of pulsation in J0840 (173, 327, and 797 s). Fourier analysis of the remaining nine objects do not indicate variability above the $4langle{A}rangle$ detection threshold. Our preliminary asteroseismic analysis of J0840 yields a stellar mass $M=1.14pm 0.01,M_{odot}$, hydrogen and helium envelope masses of $M_H = 5.8 times 10^{-7},M_{odot}$ and $M_{He}=4.5 times 10^{-4},M_{odot}$, and an expected core crystallized mass ratio of 50-70%. J1053, J1554, and J2038 have masses in the range $0.84-0.91 M_odot$ and are expected to have a CO core; however, the core of J0840 could consist of highly crystallized CO or ONeMg given its high mass. These newly discovered massive pulsators represent a significant increase in the number of known ZZ Ceti white dwarfs with mass $M > 0.85,M_odot$, and detailed asteroseismic modeling of J0840 will allow for significant tests of crystallization theory in CO and ONeMg core white dwarfs.
174 - A. Bischoff-Kim 2010
We present the results of the asteroseismological analysis of two rich DAVs, G38-29 and R808, recent targets of the Whole Earth Telescope. 20 periods between 413 s and 1089 s were found in G38-29s pulsation spectrum, while R808 is an even richer puls ator, with 24 periods between 404 s and 1144 s. Traditionally, DAVs that have been analyzed asteroseismologically have had fewer than half a dozen modes. Such a large number of modes presents a special challenge to white dwarf asteroseismology, but at the same time has the potential to yield a detailed picture of the interior chemical make-up of DAVs.We explore this possibility by varying the core profiles as well as the layer masses.We use an iterative grid search approach to find best fit models for G38-29 and R808 and comment on some of the intricacies of fine grid searches in white dwarf asteroseismology.
Many low-mass white dwarfs are being discovered in the field of our galaxy and some of them exhibit $g$-mode pulsations, comprising the extremely low-mass variable (ELMV) stars class. Despite it is generally believed that these stars are characterize d by thick H envelopes, from stellar evolution considerations, the existence of low-mass WDs with thin H envelopes is also possible. We have performed detailed asteroseismological fits to all the known ELMVs to search for a representative model by employing a set of fully evolutionary models that are representative of low-mass He-core white dwarf stars with a range of stellar masses $[0.1554-0.4352] M_{odot}$, effective temperatures $[6000-10000] $K, and also with a range of H envelope thicknesses $-5.8 lesssim log(M_{rm H}/M_{star}) lesssim -1.7$, hence expanding the space of parameters. We found that some of the stars under analysis are characterized by thick H envelopes, but others are better represented by models with thin H envelope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا