ترغب بنشر مسار تعليمي؟ اضغط هنا

Precise probing spin wave mode frequencies in the vortex state of circular magnetic dots

132   0   0.0 ( 0 )
 نشر من قبل Ahmad Awad A
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A.A. Awad




اسأل ChatGPT حول البحث

We report on detailed broadband ferromagnetic resonance measurements of azimuthal and radial spin wave excitations in circular Permalloy dots in the vortex ground state. Dots with aspect ratio (Beta =height over radius) varied from 0.03 to 0.1 were explored. We found that for Beta exceeding approximately 0.05, variation of the spin wave eigenfrequencies with Beta deviates from the predicted dependence. The frequency splitting of two lowest azimuthal modes was observed. The experimentally observed dependence of the frequency splitting on beta was reasonably well described by dynamic splitting model accounting the spin-waves and, vortex gyrotropic mode interaction.



قيم البحث

اقرأ أيضاً

277 - P. Szary , O. Petracic , H. Zabel 2009
The magnetization reversal and spin structure in circular Co/insulator/Ni80Fe20 trilayer dots has been investigated numerically. The effect of dipolar coupling between a soft ferromagnetic Permalloy (Py=Ni80Fe20) layer and a hard ferromagnetic Cobalt layer inside one stack is studied. We find either a stabilization or even a triggering of the vortex state in the Py layer due to the magnetic stray field of the Co layer, while the Co magnetization remains in a single-domain state. Furthermore, for thin Py layers a 360 deg-domain wall is observed. We construct a phase diagram, where regions of vortex stabilization, triggering, and occurrence of a 360 deg domain wall are marked.
Time-resolved soft X-ray transmission microscopy is applied to image the current-induced resonant dynamics of the magnetic vortex core realized in a micronsized Permalloy disk. The high spatial resolution better than 25 nm enables us to observe the r esonant motion of the vortex core. The result also provides the spin polarization of the current to be 0.67 +/-0.16 for Permalloy by fitting the experimental results with an analytical model in the framework of the spin-transfer torque.
We have measured X-ray magnetic circular dichroism (XMCD) spectra at the Pu $M_{4,5}$ absorption edges from a newly-prepared high-quality single crystal of the heavy fermion superconductor $^{242}$PuCoGa$_{5}$, exhibiting a critical temperature $T_{c } = 18.7~{rm K}$. The experiment probes the vortex phase below $T_{c}$ and shows that an external magnetic field induces a Pu 5$f$ magnetic moment at 2 K equal to the temperature-independent moment measured in the normal phase up to 300 K by a SQUID device. This observation is in agreement with theoretical models claiming that the Pu atoms in PuCoGa$_{5}$ have a nonmagnetic singlet ground state resulting from the hybridization of the conduction electrons with the intermediate-valence 5$f$ electronic shell. Unexpectedly, XMCD spectra show that the orbital component of the $5f$ magnetic moment increases significantly between 30 and 2 K; the antiparallel spin component increases as well, leaving the total moment practically constant. We suggest that this indicates a low-temperature breakdown of the complete Kondo-like screening of the local 5$f$ moment.
Photoinduced circular dichroism experiments in an oblique magnetic field allow measurements of Larmor precession frequencies, and so give a precise determination of the electron Lande g factor and its anisotropy in self-assembled InAs/GaAs quantum do ts emitting at 1.32 eV. In good agreement with recent theoretical results, we measure g perp= 0.397 +_ 0.003 and g par = 0.18 +- 0.02.
224 - J. P. Park , P. A. Crowell 2005
We have investigated azimuthal spin-wave modes in magnetic vortex structures using time-resolved Kerr microscopy. Spatially resolved phase and amplitude spectra of ferromagnetic disks with diameters from 5 $mu$m down to 500 nm reveal that the lowest order azimuthal spin wave mode splits into a doublet as the disk size decreases. We demonstrate that the splitting is due to the coupling between spin waves and the gyrotropic motion of the vortex core.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا