ترغب بنشر مسار تعليمي؟ اضغط هنا

Lie Groups and Quantum Mechanics

114   0   0.0 ( 0 )
 نشر من قبل M. C. Nucci
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mathematical modeling should present a consistent description of physical phenomena. We illustrate an inconsistency with two Hamiltonians -- the standard Hamiltonian and an example found in Goldstein -- for the simple harmonic oscillator and its quantisation. Both descriptions are rich in Lie point symmetries and so one can calculate many Jacobi Last Multipliers and therefore Lagrangians. The Last Multiplier provides the route to the resolution of this problem and indicates that the great debate about the quantisation of dissipative systems should never have occurred.



قيم البحث

اقرأ أيضاً

We study the twirling semigroups of (super)operators, namely, certain quantum dynamical semigroups that are associated, in a natural way, with the pairs formed by a projective representation of a locally compact group and a convolution semigroup of p robability measures on this group. The link connecting this class of semigroups of operators with (classical) Brownian motion is clarified. It turns out that every twirling semigroup associated with a finite-dimensional representation is a random unitary semigroup, and, conversely, every random unitary semigroup arises as a twirling semigroup. Using standard tools of the theory of convolution semigroups of measures and of convex analysis, we provide a complete characterization of the infinitesimal generator of a twirling semigroup associated with a finite-dimensional unitary representation of a Lie group.
The roles of Lie groups in Feynmans path integrals in non-relativistic quantum mechanics are discussed. Dynamical as well as geometrical symmetries are found useful for path integral quantization. Two examples having the symmetry of a non-compact Lie group are considered. The first is the free quantum motion of a particle on a space of constant negative curvature. The system has a group SO(d,1) associated with the geometrical structure, to which the technique of harmonic analysis on a homogeneous space is applied. As an example of a system having a non-compact dynamical symmetry, the d-dimensional harmonic oscillator is chosen, which has the non-compact dynamical group SU(1,1) besides its geometrical symmetry SO(d). The radial path integral is seen as a convolution of the matrix functions of a compact group element of SU(1,1) on the continuous basis.
256 - Xiang Ni , Chengming Bai 2010
A special symplectic Lie group is a triple $(G,omega, abla)$ such that $G$ is a finite-dimensional real Lie group and $omega$ is a left invariant symplectic form on $G$ which is parallel with respect to a left invariant affine structure $ abla$. In t his paper starting from a special symplectic Lie group we show how to ``deform the standard Lie group structure on the (co)tangent bundle through the left invariant affine structure $ abla$ such that the resulting Lie group admits families of left invariant hypersymplectic structures and thus becomes a hypersymplectic Lie group. We consider the affine cotangent extension problem and then introduce notions of post-affine structure and post-left-symmetric algebra which is the underlying algebraic structure of a special symplectic Lie algebra. Furthermore, we give a kind of double extensions of special symplectic Lie groups in terms of post-left-symmetric algebras.
84 - M. Trassinelli 2018
We present a derivation of the third postulate of Relational Quantum Mechanics (RQM) from the properties of conditional probabilities.The first two RQM postulates are based on the information that can be extracted from interaction of different system s, and the third postulate defines the properties of the probability function. Here we demonstrate that from a rigorous definition of the conditional probability for the possible outcomes of different measurements, the third postulate is unnecessary and the Borns rule naturally emerges from the first two postulates by applying the Gleasons theorem. We demonstrate in addition that the probability function is uniquely defined for classical and quantum phenomena. The presence or not of interference terms is demonstrated to be related to the precise formulation of the conditional probability where distributive property on its arguments cannot be taken for granted. In the particular case of Youngs slits experiment, the two possible argument formulations correspond to the possibility or not to determine the particle passage through a particular path.
201 - C. A. Aidala , T. C. Rogers 2021
It is unusual to find QCD factorization explained in the language of quantum information science. However, we will discuss how the issue of factorization and its breaking in high-energy QCD processes relates to phenomena like decoherence and entangle ment. We will elaborate with several examples and explain them in terms familiar from basic quantum mechanics and quantum information science.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا