ﻻ يوجد ملخص باللغة العربية
We present a derivation of the third postulate of Relational Quantum Mechanics (RQM) from the properties of conditional probabilities.The first two RQM postulates are based on the information that can be extracted from interaction of different systems, and the third postulate defines the properties of the probability function. Here we demonstrate that from a rigorous definition of the conditional probability for the possible outcomes of different measurements, the third postulate is unnecessary and the Borns rule naturally emerges from the first two postulates by applying the Gleasons theorem. We demonstrate in addition that the probability function is uniquely defined for classical and quantum phenomena. The presence or not of interference terms is demonstrated to be related to the precise formulation of the conditional probability where distributive property on its arguments cannot be taken for granted. In the particular case of Youngs slits experiment, the two possible argument formulations correspond to the possibility or not to determine the particle passage through a particular path.
Relational Quantum Mechanics (RQM) is a non-standard interpretation of quantum theory based on the idea of abolishing the notion of absolute states of systems, in favor of states of systems relative to other systems. Such a move is claimed to solve t
The subjective Bayesian interpretation of quantum mechanics (QBism) and Rovellis relational interpretation of quantum mechanics (RQM) are both notable for embracing the radical idea that measurement outcomes correspond to events whose occurrence (or
In a recent paper, Rovelli responds to our critical assessment of Relational Quantum Mechanics (RQM). His main argument is that our assessment lacks merit, because we fail to understand, or cope with, the premises of his theory; instead, he argues, w
A modified version of relational quantum mechanics is developed based on the three following ideas. An observer can develop an internally consistent description of the universe but it will, of necessity, differ in particulars from the description dev
Two-photon states produce enough symmetry needed for Diracs construction of the two-oscillator system which produces the Lie algebra for the O(3,2) space-time symmetry. This O(3,2) group can be contracted to the inhomogeneous Lorentz group which, acc