ترغب بنشر مسار تعليمي؟ اضغط هنا

An Approximation of the Outage Probability for Multi-hop AF Fixed Gain Relay

347   0   0.0 ( 0 )
 نشر من قبل Jun Kyoung Lee
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this letter, we present a closed-form approximation of the outage probability for the multi-hop amplify-and-forward (AF) relaying systems with fixed gain in Rayleigh fading channel. The approximation is derived from the outage event for each hop. The simulation results show the tightness of the proposed approximation in low and high signal-to-noise ratio (SNR) region.

قيم البحث

اقرأ أيضاً

This paper presents an analytical investigation on the outage performance of dual-hop multiple antenna amplify-and-forward relaying systems in the presence of interference. For both the fixed-gain and variable-gain relaying schemes, exact analytical expressions for the outage probability of the systems are derived. Moreover, simple outage probability approximations at the high signal to noise ratio regime are provided, and the diversity order achieved by the systems are characterized. Our results suggest that variable-gain relaying systems always outperform the corresponding fixed-gain relaying systems. In addition, the fixed-gain relaying schemes only achieve diversity order of one, while the achievable diversity order of the variable-gain relaying scheme depends on the location of the multiple antennas.
In this paper, we investigate the system outage probability of a simultaneous wireless information and power transfer (SWIPT) based two-way amplify-and-forward (AF) relay network considering transceiver hardware impairments (HIs), where the energy-co nstrained relay node processes the received signals based on a power splitting protocol and the two terminals employ a selection combining (SC) scheme to exploit the signals from the direct and relaying links. Assuming independent but non-identically distributed Nakagami-m fading channels, we derive the system outage probability in a closed-form, which enables us to identify two crucial ceiling effects on the system outage probability caused by HIs in the high data rate regions, i.e., relay cooperation ceiling (RCC) and overall system ceiling (OSC). Specifically, the RCC prevents the relaying link from participating in cooperative communications, while the OSC leaves the overall system in outage. Furthermore, we derive the achievable diversity gain of the considered network, which shows that the diversity gain equals either the shape parameter of the direct link or zero. Computer simulations are provided to validate the correctness of our analytical results, and study the effects of various system parameters on the system outage performance and the optimal power splitting ratio, as well as the energy efficiency.
This paper studies low-latency streaming codes for the multi-hop network. The source is transmitting a sequence of messages (streaming messages) to a destination through a chain of relays where each hop is subject to packet erasures. Every source mes sage has to be recovered perfectly at the destination within a delay constraint of $T$ time slots. In any sliding window of $T+1$ time slots, we assume no more than $N_j$ erasures introduced by the $j$th hop channel. The capacity in case of a single relay (a three-node network) was derived by Fong [1], et al. While the converse derived for the three-node case can be extended to any number of nodes using a similar technique (analyzing the case where erasures on other links are consecutive), we demonstrate next that the achievable scheme, which suggested a clever symbol-wise decode and forward strategy, can not be straightforwardly extended without a loss in performance. The coding scheme for the three-node network, which was shown to achieve the upper bound, was ``state-independent (i.e., it does not depend on specific erasure pattern). While this is a very desirable property, in this paper, we suggest a ``state-dependent (i.e., a scheme which depends on specific erasure pattern) and show that it achieves the upper bound up to the size of an additional header. Since, as we show, the size of the header does not depend on the field size, the gap between the achievable rate and the upper bound decreases as the field size increases.
We consider unmanned aerial vehicle (UAV)-assisted wireless communication employing UAVs as relay nodes to increase the throughput between a pair of transmitter and receiver. We focus on developing effective methods to position the UAV(s) in the sky in the presence of interference in the environment, the existence of which makes the problem non-trivial and our methodology different from the current art. We study the optimal position planning, which aims to maximize the (average) signal-to-interference-ratio (SIR) of the system, in the presence of: i) one major source of interference, ii) stochastic interference. For each scenario, we first consider utilizing a single UAV in the dual-hop relay mode and determine its optimal position. Afterward, multiple UAVs in the multi-hop relay mode are considered, for which we investigate two novel problems concerned with determining the optimal number of required UAVs and developing an optimal fully distributed position alignment method. Subsequently, we propose a cost-effective method that simultaneously minimizes the number of UAVs and determines their optimal positions to guarantee a certain (average) SIR of the system. Alternatively, for a given number of UAVs, we develop a fully distributed placement algorithm along with its performance guarantee. Numerical simulations are provided to evaluate the performance of our proposed methods.
84 - Peng Wu , Nihar Jindal 2009
This paper studies the performance of hybrid-ARQ (automatic repeat request) in Rayleigh block fading channels. The long-term average transmitted rate is analyzed in a fast-fading scenario where the transmitter only has knowledge of channel statistics , and, consistent with contemporary wireless systems, rate adaptation is performed such that a target outage probability (after a maximum number of H-ARQ rounds) is maintained. H-ARQ allows for early termination once decoding is possible, and thus is a coarse, and implicit, mechanism for rate adaptation to the instantaneous channel quality. Although the rate with H-ARQ is not as large as the ergodic capacity, which is achievable with rate adaptation to the instantaneous channel conditions, even a few rounds of H-ARQ make the gap to ergodic capacity reasonably small for operating points of interest. Furthermore, the rate with H-ARQ provides a significant advantage compared to systems that do not use H-ARQ and only adapt rate based on the channel statistics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا