ترغب بنشر مسار تعليمي؟ اضغط هنا

Outage Probability of Dual-Hop Multiple Antenna AF Relaying Systems with Interference

169   0   0.0 ( 0 )
 نشر من قبل Caijun Zhong Dr.
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents an analytical investigation on the outage performance of dual-hop multiple antenna amplify-and-forward relaying systems in the presence of interference. For both the fixed-gain and variable-gain relaying schemes, exact analytical expressions for the outage probability of the systems are derived. Moreover, simple outage probability approximations at the high signal to noise ratio regime are provided, and the diversity order achieved by the systems are characterized. Our results suggest that variable-gain relaying systems always outperform the corresponding fixed-gain relaying systems. In addition, the fixed-gain relaying schemes only achieve diversity order of one, while the achievable diversity order of the variable-gain relaying scheme depends on the location of the multiple antennas.

قيم البحث

اقرأ أيضاً

This paper investigates the impact of the channel state information (CSI) and antenna correlation at the multi-antenna relay on the performance of wireless powered dual-hop amplify-and-forward relaying systems. Depending on the available CSI at the r elay, two different scenarios are considered, namely, instantaneous CSI and statistical CSI where the relay has access only to the antenna correlation matrix. Adopting the power-splitting architecture, we present a detailed performance study for both cases. Closed-form analytical expressions are derived for the outage probability and ergodic capacity. In addition, simple high signal-to-noise ratio (SNR) outage approximations are obtained. Our results show that, antenna correlation itself does not affect the achievable diversity order, the availability of CSI at the relay determines the achievable diversity order. Full diversity order can be achieved with instantaneous CSI, while only a diversity order of one can be achieved with statistical CSI. In addition, the transmit antenna correlation and receive antenna correlation exhibit different impact on the ergodic capacity. Moreover, the impact of antenna correlation on the ergodic capacity also depends heavily on the available CSI and operating SNR.
In this paper, we investigate the system outage probability of a simultaneous wireless information and power transfer (SWIPT) based two-way amplify-and-forward (AF) relay network considering transceiver hardware impairments (HIs), where the energy-co nstrained relay node processes the received signals based on a power splitting protocol and the two terminals employ a selection combining (SC) scheme to exploit the signals from the direct and relaying links. Assuming independent but non-identically distributed Nakagami-m fading channels, we derive the system outage probability in a closed-form, which enables us to identify two crucial ceiling effects on the system outage probability caused by HIs in the high data rate regions, i.e., relay cooperation ceiling (RCC) and overall system ceiling (OSC). Specifically, the RCC prevents the relaying link from participating in cooperative communications, while the OSC leaves the overall system in outage. Furthermore, we derive the achievable diversity gain of the considered network, which shows that the diversity gain equals either the shape parameter of the direct link or zero. Computer simulations are provided to validate the correctness of our analytical results, and study the effects of various system parameters on the system outage performance and the optimal power splitting ratio, as well as the energy efficiency.
We study the outage probability of opportunistic relay selection in decode-and-forward relaying with secrecy constraints. We derive the closed-form expression for the outage probability. Based on the analytical result, the asymptotic performance is t hen investigated. The accuracy of our performance analysis is verified by the simulation results.
Approximate outage probability expressions are derived for systems employing maximum ratio combining, when both the desired signal and the interfering signals are subjected to $eta-mu$ fading, with the interferers having unequal power. The approximat ions are in terms of the Appell Function and Gauss hypergeometric function. A close match is observed between the outage probability result obtained through the derived analytical expression and the one obtained through Monte-Carlo simulations.
This paper focuses on quantifying the outage performance of terahertz (THz) relaying systems. In this direction, novel closed-form expressions for the outage probability of a dual-hop relaying system, in which both the source-relay and relay-destinat ion links suffer from fading and stochastic beam misalignment, are extracted. Our results reveal the importance of taking into account the impact of beam misalignment when characterizing the outage performance of the system as well as when selecting the transmission frequencies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا