ﻻ يوجد ملخص باللغة العربية
We show that there exist infinite-dimensional extremely non-complex Banach spaces, i.e. spaces $X$ such that the norm equality $|Id + T^2|=1 + |T^2|$ holds for every bounded linear operator $T:Xlongrightarrow X$. This answers in the positive Question 4.11 of [Kadets, Martin, Meri, Norm equalities for operators, emph{Indiana U. Math. J.} textbf{56} (2007), 2385--2411]. More concretely, we show that this is the case of some $C(K)$ spaces with few operators constructed in [Koszmider, Banach spaces of continuous functions with few operators, emph{Math. Ann.} textbf{330} (2004), 151--183] and [Plebanek, A construction of a Banach space $C(K)$ with few operators, emph{Topology Appl.} textbf{143} (2004), 217--239]. We also construct compact spaces $K_1$ and $K_2$ such that $C(K_1)$ and $C(K_2)$ are extremely non-complex, $C(K_1)$ contains a complemented copy of $C(2^omega)$ and $C(K_2)$ contains a (1-complemented) isometric copy of $ell_infty$.
We continue the study dilation of linear maps on vector spaces introduced by Bhat, De, and Rakshit. This notion is a variant of vector space dilation introduced by Han, Larson, Liu, and Liu. We derive vector spa
Let $G$ be a locally compact abelian group with a Haar measure, and $Y$ be a measure space. Suppose that $H$ is a reproducing kernel Hilbert space of functions on $Gtimes Y$, such that $H$ is naturally embedded into $L^2(Gtimes Y)$ and is invariant u
Evert and Helton proved that real free spectrahedra are the matrix convex hulls of their absolute extreme points. However, this result does not extend to complex free spectrahedra, and we examine multiple ways in which the analogous result can fail.
We show that a Banach space with numerical index one cannot enjoy good convexity or smoothness properties unless it is one-dimensional. For instance, it has no WLUR points in its unit ball, its norm is not Frechet smooth and its dual norm is neither
Famous Naimark-Han-Larson dilation theorem for frames in Hilbert spaces states that every frame for a separable Hilbert space $mathcal{H}$ is image of a Riesz basis under an orthogonal projection from a separable Hilbert space $mathcal{H}_1$ which co