ﻻ يوجد ملخص باللغة العربية
We continue the study dilation of linear maps on vector spaces introduced by Bhat, De, and Rakshit. This notion is a variant of vector space dilation introduced by Han, Larson, Liu, and Liu. We derive vector spa
Motivated by a general dilation theory for operator-valued measures, framings and bounded linear maps on operator algebras, we consider the dilation theory of the above objects with special structures. We show that every operator-valued system of imp
Evert and Helton proved that real free spectrahedra are the matrix convex hulls of their absolute extreme points. However, this result does not extend to complex free spectrahedra, and we examine multiple ways in which the analogous result can fail.
Let $X, Y$ be complete metric spaces and $E, F$ be Banach spaces. A bijective linear operator from a space of $E$-valued functions on $X$ to a space of $F$-valued functions on $Y$ is said to be biseparating if $f$ and $g$ are disjoint if and only if
It is well-known that if T is a D_m-D_n bimodule map on the m by n complex matrices, then T is a Schur multiplier and $|T|_{cb}=|T|$. If n=2 and T is merely assumed to be a right D_2-module map, then we show that $|T|_{cb}=|T|$. However, this propert
A linear map $Phi :mathbb{M}_n to mathbb{M}_k$ is called completely copositive if the resulting matrix $[Phi (A_{j,i})]_{i,j=1}^m$ is positive semidefinite for any integer $m$ and positive semidefinite matrix $[A_{i,j}]_{i,j=1}^m$. In this paper, we