ترغب بنشر مسار تعليمي؟ اضغط هنا

Coupled Mode Equations and Gap Solitons for the 2D Gross-Pitaevskii equation with a non-separable periodic potential

565   0   0.0 ( 0 )
 نشر من قبل Tomas Dohnal
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gap solitons near a band edge of a spatially periodic nonlinear PDE can be formally approximated by solutions of Coupled Mode Equations (CMEs). Here we study this approximation for the case of the 2D Periodic Nonlinear Schr{o}dinger / Gross-Pitaevskii Equation with a non-separable potential of finite contrast. We show that unlike in the case of separable potentials [T. Dohnal, D. Pelinovsky, and G. Schneider, J. Nonlin. Sci. {bf 19}, 95--131 (2009)] the CME derivation has to be carried out in Bloch rather than physical coordinates. Using the Lyapunov-Schmidt reduction we then give a rigorous justification of the CMEs as an asymptotic model for reversible non-degenerate gap solitons and even potentials and provide $H^s$ estimates for this approximation. The results are confirmed by numerical examples including some new families of CMEs and gap solitons absent for separable potentials.



قيم البحث

اقرأ أيضاً

119 - Dun Zhao , Hua-Yue Chai , 2008
In this paper we study the integrability of a class of Gross-Pitaevskii equations managed by Feshbach resonance in an expulsive parabolic external potential. By using WTC test, we find a condition under which the Gross-Pitaevskii equation is complete ly integrable. Under the present model, this integrability condition is completely consistent with that proposed by Serkin, Hasegawa, and Belyaeva [V. N. Serkin et al., Phys. Rev. Lett. 98, 074102 (2007)]. Furthermore, this integrability can also be explicitly shown by a transformation, which can convert the Gross-Pitaevskii equation into the well-known standard nonlinear Schrodinger equation. By this transformation, each exact solution of the standard nonlinear Schrodinger equation can be converted into that of the Gross-Pitaevskii equation, which builds a systematical connection between the canonical solitons and the so-called nonautonomous ones. The finding of this transformation has a significant contribution to understanding the essential properties of the nonautonomous solitions and the dynamics of the Bose-Einstein condensates by using the Feshbach resonance technique.
In this paper, we consider the dynamical evolution of dark vortex states in the two-dimensional defocusing discrete nonlinear Schroedinger model, a model of interest both to atomic physics and to nonlinear optics. We find that in a way reminiscent of their 1d analogs, i.e., of discrete dark solitons, the discrete defocusing vortices become unstable past a critical coupling strength and, in the infinite lattice, they apparently remain unstable up to the continuum limit where they are restabilized. In any infinite lattice, stabilization windows of the structures may be observed. Systematic tools are offered for the continuation of the states both from the continuum and, especially, from the anti-continuum limit. Although the results are mainly geared towards the uniform case, we also consider the effect of harmonic trapping potentials.
The Gross-Pitaevskii equation is a widely used model in physics, in particular in the context of Bose-Einstein condensates. However, it only takes into account local interactions between particles. This paper demonstrates the validity of using a nonl ocal formulation as a generalization of the local model. In particular, the paper demonstrates that the solution of the nonlocal model approaches in norm the solution of the local model as the nonlocal model approaches the local model. The nonlocality and potential used for the Gross-Pitaevskii equation are quite general, thus this paper shows that one can easily add nonlocal effects to interesting classes of Bose-Einstein condensate models. Based on a particular choice of potential for the nonlocal Gross-Pitaevskii equation, we establish the orbital stability of a class of parameter-dependent solutions to the nonlocal problem for certain parameter regimes. Numerical results corroborate the analytical stability results and lead to predictions about the stability of the class of solutions for parameter values outside of the purview of the theory established in this paper.
178 - D. Ananikian , T. Bergeman 2005
There have been many discussions of two-mode models for Bose condensates in a double well potential, but few cases in which parameters for these models have been calculated for realistic situations. Recent experiments lead us to use the Gross-Pitaevs kii equation to obtain optimum two-mode parameters. We find that by using the lowest symmetric and antisymmetric wavefunctions, it is possible to derive equations for a more exact two-mode model that provides for a variable tunneling rate depending on the instantaneous values of the number of atoms and phase differences. Especially for larger values of the nonlinear interaction term and larger barrier heights, results from this model produce better agreement with numerical solutions of the time-dependent Gross-Pitaevskii equation in 1D and 3D, as compared with previous models with constant tunneling, and better agreement with experimental results for the tunneling oscillation frequency [Albiez et al., cond-mat/0411757]. We also show how this approach can be used to obtain modified equations for a second quantized version of the Bose double well problem.
This note examines Gross-Pitaevskii equations with PT-symmetric potentials of the Wadati type: $V=-W^2+iW_x$. We formulate a recipe for the construction of Wadati potentials supporting exact localised solutions. The general procedure is exemplified b y equations with attractive and repulsive cubic nonlinearity bearing a variety of bright and dark solitons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا