ﻻ يوجد ملخص باللغة العربية
In this paper we study the integrability of a class of Gross-Pitaevskii equations managed by Feshbach resonance in an expulsive parabolic external potential. By using WTC test, we find a condition under which the Gross-Pitaevskii equation is completely integrable. Under the present model, this integrability condition is completely consistent with that proposed by Serkin, Hasegawa, and Belyaeva [V. N. Serkin et al., Phys. Rev. Lett. 98, 074102 (2007)]. Furthermore, this integrability can also be explicitly shown by a transformation, which can convert the Gross-Pitaevskii equation into the well-known standard nonlinear Schrodinger equation. By this transformation, each exact solution of the standard nonlinear Schrodinger equation can be converted into that of the Gross-Pitaevskii equation, which builds a systematical connection between the canonical solitons and the so-called nonautonomous ones. The finding of this transformation has a significant contribution to understanding the essential properties of the nonautonomous solitions and the dynamics of the Bose-Einstein condensates by using the Feshbach resonance technique.
In this paper, we consider the dynamical evolution of dark vortex states in the two-dimensional defocusing discrete nonlinear Schroedinger model, a model of interest both to atomic physics and to nonlinear optics. We find that in a way reminiscent of
We present previously unknown solutions to the 3D Gross--Pitaevskii equation describing atomic Bose-Einstein condensates. This model supports elaborate patterns, including excited states bearing vorticity. The discovered coherent structures exhibit s
This note examines Gross-Pitaevskii equations with PT-symmetric potentials of the Wadati type: $V=-W^2+iW_x$. We formulate a recipe for the construction of Wadati potentials supporting exact localised solutions. The general procedure is exemplified b
Previous simulations of the one-dimensional Gross-Pitaevskii equation (GPE) with repulsive nonlinearity and a harmonic-oscillator trapping potential hint towards the emergence of quasi-integrable dynamics -- in the sense of quasi-periodic evolution o
We show how to adapt the ideas of local energy and momentum conservation in order to derive modifications to the Gross-Pitaevskii equation which can be used phenomenologically to describe irreversible effects in a Bose-Einstein condensate. Our approa