ﻻ يوجد ملخص باللغة العربية
We have imaged the disc of the young star HL Tau using the VLA at 1.3 cm, with 0.08 resolution (as small as the orbit of Jupiter). The disc is around half the stellar mass, assuming a canonical gas-mass conversion from the measured mass in large dust grains. A simulation shows that such discs are gravitationally unstable, and can fragment at radii of a few tens of AU to form planets. The VLA image shows a compact feature in the disc at 65 AU radius (confirming the `nebulosity of Welch et al. 2004), which is interpreted as a localised surface density enhancement representing a candidate proto-planet in its earliest accretion phase. If correct, this is the first image of a low-mass companion object seen together with the parent disc material out of which it is forming. The object has an inferred gas plus dust mass of approximately 14 M(Jupiter), similar to the mass of a proto-planet formed in the simulation. The disc instability may have been enhanced by a stellar flyby: the proper motion of the nearby star XZ Tau shows it could have recently passed the HL Tau disc as close as ~600 AU.
We present high-resolution infrared spectra of HL Tau, a heavily embedded young star. The spectra exhibit broad emission lines of hot CO gas as well as narrow absorption lines of cold CO gas. The column density for this cooler material (7.5+/-0.2 x 1
We conducted a detailed radiative transfer modeling of the dust emission from the circumstellar disk around HL Tau. The goal of our study is to derive the surface density profile of the inner disk and its structure. In addition to the Atacama Large M
The recent advent of spatially resolved mm- and cm-wavelength polarimetry in protostellar accretion discs could help clarify the role of magnetic fields in the angular momentum transport in these systems. The best case to date is that of HL~Tau, wher
The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau these structures have been interpreted as signatures for the presence of (p
The combination of high resolution and sensitivity offered by ALMA is revolutionizing our understanding of protoplanetary discs, as their bulk gas and dust distributions can be studied independently. In this paper we present resolved ALMA observation