ﻻ يوجد ملخص باللغة العربية
The recent advent of spatially resolved mm- and cm-wavelength polarimetry in protostellar accretion discs could help clarify the role of magnetic fields in the angular momentum transport in these systems. The best case to date is that of HL~Tau, where the inability to produce a good fit to the 1.25-mm data with a combination of vertical and azimuthal magnetic field components was interpreted as implying that centrifugally driven winds (CDWs) are probably not a significant transport mechanism on the $sim 10^2,$au scale probed by the observations. Using synthetic polarization maps of heuristic single-field-component discs and of a post-processed simulation of a wind-driving disc, we demonstrate that a much better fit to the data can be obtained if the radial field component, a hallmark of the CDW mechanism, dominates in the polarized emission region. A similar inference was previously made in modelling the far-infrared polarization map of the pc-scale dust ring in the Galactic centre. To reconcile this interpretation with theoretical models of protostellar discs, which indicate that the wind is launched from a comparatively high elevation above the mid-plane, we propose that most of the polarized emission originates -- with a high ($ga 10$%) intrinsic degree of polarization -- in small ($la 0.1,$mm) grains that remain suspended above the mid-plane, and that the bulk of the mm-wavelength emission is produced -- with low intrinsic polarization -- by larger grains that have settled to the mid-plane.
Recent ALMA images of HL Tau show gaps in the dusty disk that may be caused by planetary bodies. Given the young age of this system, if confirmed, this finding would imply very short timescales for planet formation, probably in a gravitationally unst
We model the ALMA and VLA millimeter radial profiles of the disk around HL Tau to constrain the properties of the dust grains. We adopt the disk evolutionary models of Lynden-Bell & Pringle and calculate their temperature and density structure and em
The mechanism for producing polarized emission from protostellar disks at (sub)millimeter wavelengths is currently uncertain. Classically, polarization is expected from non-spherical grains aligned with the magnetic field. Recently, two alternatives
The protoplanetary disk around HL Tau is so far the youngest candidate of planet formation, and it is still embedded in a protostellar envelope with a size of thousands of au. In this work, we study the gas kinematics in the envelope and its possible
We present new wind models for {tau} Bootis ({tau} Boo), a hot-Jupiter-host-star whose observable magnetic cycles makes it a uniquely useful target for our goal of monitoring the temporal variability of stellar winds and their exoplanetary impacts. U