ﻻ يوجد ملخص باللغة العربية
We present a new method of investigating the so-called quasi-linear strongly damped wave equations $$ partial_t^2u-gammapartial_tDelta_x u-Delta_x u+f(u)= abla_xcdot phi( abla_x u)+g $$ in bounded 3D domains. This method allows us to establish the existence and uniqueness of energy solutions in the case where the growth exponent of the non-linearity $phi$ is less than 6 and $f$ may have arbitrary polynomial growth rate. Moreover, the existence of a finite-dimensional global and exponential attractors for the solution semigroup associated with that equation and their additional regularity are also established. In a particular case $phiequiv0$ which corresponds to the so-called semi-linear strongly damped wave equation, our result allows to remove the long-standing growth restriction $|f(u)|leq C(1+ |u|^5)$.
We study the hyperboloidal initial value problem for the one-dimensional wave equation perturbed by a smooth potential. We show that the evolution decomposes into a finite-dimensional spectral part and an infinite-dimensional radiation part. For the
A weak formulation for the so-called semilinear strongly damped wave equation with constraint is introduced and a corresponding notion of solution is defined. The main idea in this approach consists in the use of duality techniques in Sobolev-Bochner
This paper analyzes inverse scattering for the one-dimensional Helmholtz equation in the case where the wave speed is piecewise constant. Scattering data recorded for an arbitrarily small interval of frequencies is shown to determine the wave speed u
The dissipative wave equation with a critical quintic nonlinearity in smooth bounded three dimensional domain is considered. Based on the recent extension of the Strichartz estimates to the case of bounded domains, the existence of a compact global a
We show improved local energy decay for the wave equation on asymptotically Euclidean manifolds in odd dimensions in the short range case. The precise decay rate depends on the decay of the metric towards the Euclidean metric. We also give estimates