ترغب بنشر مسار تعليمي؟ اضغط هنا

Attractors for damped quintic wave equations in bounded domains

177   0   0.0 ( 0 )
 نشر من قبل Sergey Zelik V.
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The dissipative wave equation with a critical quintic nonlinearity in smooth bounded three dimensional domain is considered. Based on the recent extension of the Strichartz estimates to the case of bounded domains, the existence of a compact global attractor for the solution semigroup of this equation is established. Moreover, the smoothness of the obtained attractor is also shown.

قيم البحث

اقرأ أيضاً

We report on new results concerning the global well-posedness, dissipativity and attractors of the damped quintic wave equations in bounded domains of R^3.
Dissipative wave equations with critical quintic nonlinearity and damping term involving the fractional Laplacian are considered. The additional regularity of energy solutions is established by constructing the new Lyapunov-type functional and based on this, the global well-posedness and dissipativity of the energy solutions as well as the existence of a smooth global and exponential attractors of finite Hausdorff and fractal dimension is verified.
The paper gives a comprehensive study of infinite-energy solutions and their long-time behavior for semi-linear weakly damped wave equations in $mathbb{R}^3$ with quintic nonlinearities. This study includes global well-posedness of the so-called Shat ah-Struwe solutions, their dissipativity, the existence of a locally compact global attractors (in the uniformly local phase spaces) and their extra regularity.
We give a detailed study of attractors for measure driven quintic damped wave equations with periodic boundary conditions. This includes uniform energy-to-Strichartz estimates, the existence of uniform attractors in a weak or strong topology in the e nergy phase space, the possibility to present them as a union of all complete trajectories, further regularity, etc.
78 - Qianqiao Guo 2018
Consider the integral equation begin{equation*} f^{q-1}(x)=int_Omegafrac{f(y)}{|x-y|^{n-alpha}}dy, f(x)>0,quad xin overline Omega, end{equation*} where $Omegasubset mathbb{R}^n$ is a smooth bounded domain. For $1<alpha<n$, the existence of energy ma ximizing positive solution in subcritical case $2<q<frac{2n}{n+alpha}$, and nonexistence of energy maximizing positive solution in critical case $q=frac{2n}{n+alpha}$ are proved in cite{DZ2017}. For $alpha>n$, the existence of energy minimizing positive solution in subcritical case $0<q<frac{2n}{n+alpha}$, and nonexistence of energy minimizing positive solution in critical case $q=frac{2n}{n+alpha}$ are also proved in cite{DGZ2017}. Based on these, in this paper, the blowup behaviour of energy maximizing positive solution as $qto (frac{2n}{n+alpha})^+ $ (in the case of $1<alpha<n$), and the blowup behaviour of energy minimizing positive solution as $qto (frac{2n}{n+alpha})^-$ (in the case of $alpha>n$) are analyzed. We see that for $1<alpha<n$ the blowup behaviour obtained is quite similar to that of the elliptic equation involving subcritical Sobolev exponent. But for $alpha>n$, different phenomena appears.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا