ﻻ يوجد ملخص باللغة العربية
We study an equation lying `mid-way between the periodic Hunter-Saxton and Camassa-Holm equations, and which describes evolution of rotators in liquid crystals with external magnetic field and self-interaction. We prove that it is an Euler equation on the diffeomorphism group of the circle corresponding to a natural right-invariant Sobolev metric. We show that the equation is bihamiltonian and admits both cusped, as well as smooth, traveling-wave solutions which are natural candidates for solitons. We also prove that it is locally well-posed and establish results on the lifespan of its solutions. Throughout the paper we argue that despite similarities to the KdV, CH and HS equations, the new equation manifests several distinctive features that set it apart from the other three.
In this paper we develop an existence theory for the Cauchy problem to the stochastic Hunter-Saxton equatio, and prove several properties of the blow-up of its solutions. An important part of the paper is the continuation of solutions to the stochast
In the article a convergent numerical method for conservative solutions of the Hunter--Saxton equation is derived. The method is based on piecewise linear projections, followed by evolution along characteristics where the time step is chosen in order
We study the Lipschitz stability in time for $alpha$-dissipative solutions to the Hunter-Saxton equation, where $alpha in [0,1]$ is a constant. We define metrics in both Lagrangian and Eulerian coordinates, and establish Lipschitz stability for those metrics.
We show that the Hunter-Saxton equation $u_t+uu_x=frac14big(int_{-infty}^x dmu(t,z)- int^{infty}_x dmu(t,z)big)$ and $mu_t+(umu)_x=0$ has a unique, global, weak, and conservative solution $(u,mu)$ of the Cauchy problem on the line.
We analyze stability of conservative solutions of the Cauchy problem on the line for the (integrated) Hunter-Saxton (HS) equation. Generically, the solutions of the HS equation develop singularities with steep gradients while preserving continuity of