ترغب بنشر مسار تعليمي؟ اضغط هنا

SN1987A Pulsar Velocity From Modified URCA Processes and Landau Levels

40   0   0.0 ( 0 )
 نشر من قبل Leonard S. Kisslinger
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a recent estimate of the velocity of pulsars arising from neutrinos emitted with modified URCA processes with electrons in Landua levels, and the temperture of the protoneutron star created by SN1987A, derived from the energy of the observed neutrinos, we predict the velocity of the resulting pulsar.

قيم البحث

اقرأ أيضاً

We study neutrino emission from direct Urca processes in pion condensed quark matter. In compact stars with high baryon density, the emission is dominated by the gapless modes of the pion condensation which leads to an enhanced emissivity. While for massless quarks the enhancement is not remarkable, the emissivity is significantly larger and the cooling of the condensed matter is considerably faster than that in normal quark matter when the mass difference between $u$- and $d$-quarks is sizable.
We consider graphene in a strong perpendicular magnetic field at zero temperature with an integral number of filled Landau levels and study the dispersion of single particle-hole excitations. We first analyze the two-body problem of a single Dirac el ectron and hole in a magnetic field interacting via Coulomb forces. We then turn to the many-body problem, where particle-hole symmetry and the existence of two valleys lead to a number of effects peculiar to graphene. We find that the coupling together of a large number of low-lying excitations leads to strong many-body corrections, which could be observed in inelastic light scattering or optical absorption. We also discuss in detail how the appearance of different branches in the exciton dispersion is sensitive to the number of filled spin and valley sublevels.
79 - N. D. Hari Dass 2011
This is a brief note discussing the energy dependence of superluminal neutrino velocities recently claimed by OPERA [1,2]. The analysis is based on the data provided there on this issue, as well as on consistency with neutrino data from SN1987a as re corded by the Kamioka detector [3]. It is seen that it is quite difficult to reconcile OPERA with SN1987a. The so called Coleman- Glashow dispersion relations do not do that well, if applied at all neutrino energies. The so called quantum gravity inspired dispersion relations perform far worse. Near OPERA energies both an energy-independent velocity, as well as a linear energy dependence with an offset that is comparable in value to the observed {delta}v by OPERA at 28.1 GeV works very well. Our analysis shows that precision arrival time data from SN1987a still allow for superluminal behaviour for supernova neutrinos. A smooth interpolation is given that reconciles OPERA and SN1987a quite well. It suggests a fourth power energy dependence for {delta}v of supernova neutrinos. This behaviour is insensitive to whether the velocities are energy-independent, or linearly dependent on energy, near OPERA scale of energies. Suggestions are made for experimental checks for these relations.
It has long been speculated that quasi-two-dimensional superconductivity can reappear above its semiclassical upper critical field due to Landau quantization, yet this reentrant property has never been observed. Here, we argue that twisted bilayer gr aphene at a magic angle (MATBG) is an ideal system in which to search for this phenomenon because its Landau levels are doubly degenerate, and its superconductivity appears already at carrier densities small enough to allow the quantum limit to be reached at relatively modest magnetic fields. We study this problem theoretically by combining a simplified continuum model for the electronic structure of MATBG with a phenomenological attractive pairing interaction, and discuss obstacles to the observation of quantum Hall superconductivity presented by disorder, thermal fluctuations, and competing phases.
We present first evidence for the Landau level structure of Dirac eigenmodes in full QCD for nonzero background magnetic fields, based on first principles lattice simulations using staggered quarks. Our approach involves the identification of the low est Landau level modes in two dimensions, where topological arguments ensure a clear separation of these modes from energetically higher states, and an expansion of the full four-dimensional modes in the basis of these two-dimensional states. We evaluate various fermionic observables including the quark condensate and the spin polarization in this basis to find how much the lowest Landau level contributes to them. The results allow for a deeper insight into the dynamics of quarks and gluons in background magnetic fields and may be directly compared to low-energy models of QCD employing the lowest Landau level approximation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا