ﻻ يوجد ملخص باللغة العربية
We present a new measurement of the Newtonian gravitational constant G based on cold atom interferometry. Freely falling samples of laser-cooled rubidium atoms are used in a gravity gradiometer to probe the field generated by nearby source masses. In addition to its potential sensitivity, this method is intriguing as gravity is explored by a quantum system. We report a value of G=6.667 10^{-11} m^{3} kg^{-1} s^{-2}, estimating a statistical uncertainty of $pm$ 0.011 10^{-11} m^{3} kg^{-1} s^{-2} and a systematic uncertainty of $pm$ 0.003 10^{-11} m^{3} kg^{-1} s^{-2}. The long-term stability of the instrument and the signal-to-noise ratio demonstrated here open interesting perspectives for pushing the measurement accuracy below the 100 ppm level.
We developed a gravity-gradiometer based on atom interferometry for the determination of the Newtonian gravitational constant textit{G}. The apparatus, combining a Rb fountain, Raman interferometry and a juggling scheme for fast launch of two atomic
About 300 experiments have tried to determine the value of the Newtonian gravitational constant, G, so far, but large discrepancies in the results have made it impossible to know its value precisely. The weakness of the gravitational interaction and
We have developed an atom interferometer providing a full inertial base. This device uses two counter-propagating cold-atom clouds that are launched in strongly curved parabolic trajectories. Three single Raman beam pairs, pulsed in time, are success
We propose a tractor atom interferometer (TAI) based on three-dimensional (3D) confinement and transport of split atomic wavefunction components in potential wells that follow programmed paths. The paths are programmed to split and recombine atomic w
We describe an atom interferometric gravitational wave detector design that can operate in a resonant mode for increased sensitivity. By oscillating the positions of the atomic wavepackets, this resonant detection mode allows for coherently enhanced,