ترغب بنشر مسار تعليمي؟ اضغط هنا

Tractor Atom Interferometry

201   0   0.0 ( 0 )
 نشر من قبل Alisher Duspayev
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a tractor atom interferometer (TAI) based on three-dimensional (3D) confinement and transport of split atomic wavefunction components in potential wells that follow programmed paths. The paths are programmed to split and recombine atomic wavefunctions at well-defined space-time points, guaranteeing closure of the interferometer. Uninterrupted 3D confinement of the interfering wavefunction components in the tractor wells eliminates coherence loss due to wavepacket dispersion. Using Crank-Nicolson simulation of the time-dependent Schrodinger equation, we compute the quantum evolution of scalar and spinor wavefunctions in several TAI sample scenarios. The interferometric phases extracted from the wavefunctions allow us to quantify gravimeter sensitivity, for the TAI scenarios studied. We show that spinor-TAI supports matter-wave beam splitters that are more robust against non-adiabatic effects than their scalar-TAI counterparts. We confirm the validity of semiclassical path-integral phases taken along the programmed paths of the TAI. Aspects for future experimental realizations of TAI are discussed.

قيم البحث

اقرأ أيضاً

We demonstrate matterwave interference in a warm vapor of rubidium atoms. Established approaches to light pulse atom interferometry rely on laser cooling to concentrate a large ensemble of atoms into a velocity class resonant with the atom optical li ght pulse. In our experiment, we show that clear interference signals may be obtained without laser cooling. This effect relies on the Doppler selectivity of the atom interferometer resonance. This interferometer may be configured to measure accelerations, and we demonstrate that multiple interferometers may be operated simultaneously by addressing multiple velocity classes.
472 - Robin Corgier 2020
We present a source engineering concept for a binary quantum mixture suitable as input for differential, precision atom interferometry with drift times of several seconds. To solve the non-linear dynamics of the mixture, we develop a set of scaling a pproach equations and verify their validity contrasting it to the one of a system of coupled Gross-Pitaevskii equations. This scaling approach is a generalization of the standard approach commonly used for single species. Its validity range is discussed with respect to intra- and inter-species interaction regimes. We propose a multi-stage, non-linear atomic lens sequence to simultaneously create dual ensembles with ultra-slow kinetic expansion energies, below 15 pK. Our scheme has the advantage of mitigating wave front aberrations, a leading systematic effect in precision atom interferometry.
Atom interferometers offer excellent sensitivity to gravitational and inertial signals but have limited dynamic range. We introduce a scheme that improves on this trade-off by a factor of 50 using composite fringes, obtained from sets of measurements with slightly varying interrogation times. We analyze analytically the performance gain in this approach and the trade-offs it entails between sensitivity, dynamic range, and temporal bandwidth, and we experimentally validate the analysis over a wide range of parameters. By combining composite-fringe measurements with a particle-filter estimation protocol, we demonstrate continuous tracking of a rapidly varying signal over a span two orders of magnitude larger than the dynamic range of a traditional atom interferometer.
Point source atom interferometry is a promising approach for implementing robust, high-sensitivity, rotation sensors using cold atoms. However, its scale factor, i.e., the ratio between the interferometer signal and the actual rotation rate, depends on the initial conditions of the atomic cloud, which may drift in time and result in bias instability, particularly in compact devices with short interrogation times. We present two methods to stabilize the scale factor, one relying on a model-based correction which exploits correlations between multiple features of the interferometer output and works on a single-shot basis, and the other a self-calibrating method where a known bias rotation is applied to every other measurement, requiring no prior knowledge of the underlying model but reducing the sensor bandwidth by a factor of two. We demonstrate both schemes experimentally with complete suppression of scale factor drifts, maintaining the original rotation sensitivity and allowing for bias-free operation over several hours.
We show that light-pulse atom interferometry with atomic point sources and spatially resolved detection enables multi-axis (two rotation, one acceleration) precision inertial sensing at long interrogation times. Using this method, we demonstrate a li ght-pulse atom interferometer for Rb-87 with 1.4 cm peak wavepacket separation and a duration of 2T = 2.3 seconds. The inferred acceleration sensitivity of each shot is 6.7 * 10^(-12) g, which improves on previous limits by more than two orders of magnitude. We also measure the Earths rotation rate with a precision of 200 nrad/s.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا