ﻻ يوجد ملخص باللغة العربية
Loebl, Komlos, and Sos conjectured that if at least half the vertices of a graph G have degree at least some k, then every tree with at most k edges is a subgraph of G. We prove the conjecture for all trees of diameter at most 5 and for a class of caterpillars. Our result implies a bound on the Ramsey number r(T,F) of trees T, F from the above classes.
Loebl, Komlos, and Sos conjectured that any graph with at least half of its vertices of degree at least k contains every tree with at most k edges. We propose a version of this conjecture for skewed trees, i.e., we consider the class of trees with at
We prove a version of the Loebl-Komlos-Sos Conjecture for dense graphs. For each q>0 there exists a number $n_0in mathbb{N}$ such that for any n>n_0 and k>qn the following holds: if G be a graph of order n with at least n/2 vertices of degree at leas
Loebl, Komlos and Sos conjectured that every $n$-vertex graph $G$ with at least $n/2$ vertices of degree at least $k$ contains each tree $T$ of order $k+1$ as a subgraph. We give a sketch of a proof of the approximate version of this conjecture for l
In a series of four papers we prove the following relaxation of the Loebl-Komlos-Sos Conjecture: For every $alpha>0$ there exists a number $k_0$ such that for every $k>k_0$ every $n$-vertex graph $G$ with at least $(frac12+alpha)n$ vertices of degree
This is the third of a series of four papers in which we prove the following relaxation of the Loebl-Komlos-Sos Conjecture: For every $alpha>0$ there exists a number $k_0$ such that for every $k>k_0$ every $n$-vertex graph $G$ with at least $(frac12+