ﻻ يوجد ملخص باللغة العربية
This is the third of a series of four papers in which we prove the following relaxation of the Loebl-Komlos-Sos Conjecture: For every $alpha>0$ there exists a number $k_0$ such that for every $k>k_0$ every $n$-vertex graph $G$ with at least $(frac12+alpha)n$ vertices of degree at least $(1+alpha)k$ contains each tree $T$ of order $k$ as a subgraph. In the first paper of the series, we gave a decomposition of the graph $G$ into several parts of different characteristics. In the second paper, we found a combinatorial structure inside the decomposition. In this paper, we will give a refinement of this structure. In the forthcoming fourth paper, the refined structure will be used for embedding the tree $T$.
This is the second of a series of four papers in which we prove the following relaxation of the Loebl-Komlos--Sos Conjecture: For every $alpha>0$ there exists a number $k_0$ such that for every $k>k_0$ every $n$-vertex graph $G$ with at least $(frac1
Loebl, Komlos and Sos conjectured that every $n$-vertex graph $G$ with at least $n/2$ vertices of degree at least $k$ contains each tree $T$ of order $k+1$ as a subgraph. We give a sketch of a proof of the approximate version of this conjecture for l
In a series of four papers we prove the following relaxation of the Loebl-Komlos-Sos Conjecture: For every $alpha>0$ there exists a number $k_0$ such that for every $k>k_0$ every $n$-vertex graph $G$ with at least $(frac12+alpha)n$ vertices of degree
We prove a version of the Loebl-Komlos-Sos Conjecture for dense graphs. For each q>0 there exists a number $n_0in mathbb{N}$ such that for any n>n_0 and k>qn the following holds: if G be a graph of order n with at least n/2 vertices of degree at leas
This is the last paper of a series of four papers in which we prove the following relaxation of the Loebl-Komlos-Sos Conjecture: For every $alpha>0$ there exists a number~$k_0$ such that for every $k>k_0$ every $n$-vertex graph $G$ with at least $(fr