ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetotransport of electrons in quantum Hall systems

125   0   0.0 ( 0 )
 نشر من قبل Ivan Dmitriev
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent theoretical results on magnetotransport of electrons in a 2D system in the range of moderately strong transverse magnetic fields are reviewed. The phenomena discussed include: quasiclassical memory effects in systems with various types of disorder, transport in lateral superlattices, interaction-induced quantum magnetoresistance, quantum magnetooscillations in dc and ac transport, and oscillatory microwave photoconductivity.



قيم البحث

اقرأ أيضاً

292 - C. Wang , Y. Avishai (1 2013
Two-dimensional electron gas in the integer quantum Hall regime is investigated numerically by studying the dynamics of an electron hopping on a square lattice subject to a perpendicular magnetic field and random on-site energy with white noise distr ibution. Focusing on the lowest Landau band we establish an anti-levitation scenario of the extended states: As either the disorder strength $W$ increases or the magnetic field strength $B$ decreases, the energies of the extended states move below the Landau energies pertaining to a clean system. Moreover, for strong enough disorder, there is a disorder dependent critical magnetic field $B_c(W)$ below which there are no extended states at all. A general phase diagram in the $W-1/B$ plane is suggested with a line separating domains of localized and delocalized states.
294 - W. Zhu , Q. W. Shi , J. G. Hou 2010
The puzzle of recently observed insulating phase of graphene at filling factor $ u=0$ in high magnetic field quantum Hall (QH) experiments is investigated. We show that the magnetic field driven Peierls-type lattice distortion (due to the Landau leve l degeneracy) and random bond fluctuations compete with each other, resulting in a transition from a QH-metal state at relative low field to a QH-insulator state at high enough field at $ u=0$. The critical field that separates QH-metal from QH-insulator depends on the bond fluctuation. The picture explains well why the field required for observing the insulating phase is lower for a cleaner sample.
The realization of the quantum anomalous Hall (QAH) effect without magnetic doping attracts intensive interest since magnetically doped topological insulators usually possess inhomogeneity of ferromagnetic order. Here, we propose a different strategy to realize intriguing QAH states arising from the interplay of light and non-magnetic disorder in two-dimensional topologically trivial systems. By combining the Born approximation and Floquet theory, we show that a time-reversal invariant disorder-induced topological insulator, known as the topological Anderson insulator (TAI), would evolve into a time-reversal broken TAI and then into a QAH insulator by shining circularly polarized light. We utilize spin and charge Hall conductivities, which can be measured in experiments directly, to distinguish these three different topological phases. This work not only offers an exciting opportunity to realize the high-temperature QAH effect without magnetic orders, but also is important for applications of topological states to spintronics.
Network models for equilibrium integer quantum Hall (IQH) transitions are described by unitary scattering matrices, that can also be viewed as representing non-equilibrium Floquet systems. The resulting Floquet bands have zero Chern number, and are i nstead characterized by a chiral Floquet (CF) winding number. This begs the question: How can a model without Chern number describe IQH systems? We resolve this apparent paradox by showing that non-zero Chern number is recovered from the network model via the energy dependence of network model scattering parameters. This relationship shows that, despite their topologically distinct origins, IQH and CF topology-changing transitions share identical universal scaling properties.
166 - K. Kobayashi , T. Ohtsuki , 2011
We have estimated the critical exponent describing the divergence of the localization length at the metal-quantum spin Hall insulator transition. The critical exponent for the metal-ordinary insulator transition in quantum spin Hall systems is known to be consistent with that of topologically trivial symplectic systems. However, the precise estimation of the critical exponent for the metal-quantum spin Hall insulator transition proved to be problematic because of the existence, in this case, of edge states in the localized phase. We have overcome this difficulty by analyzing the second smallest positive Lyapunov exponent instead of the smallest positive Lyapunov exponent. We find a value for the critical exponent $ u=2.73 pm 0.02$ that is consistent with that for topologically trivial symplectic systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا