ﻻ يوجد ملخص باللغة العربية
Gamma-ray burst afterglow observations in the Swift era have a perceived lack of achromatic jet breaks compared to the BeppoSAX, or pre-Swift era. Specifically, relatively few breaks, consistent with jet breaks, are observed in the X-ray light curves of these bursts. If these breaks are truly missing, it has serious consequences for the interpretation of GRB jet collimation and energy requirements, and the use of GRBs as cosmological tools. Here we address the issue of X-ray breaks that are possibly `hidden and hence the light curves are misinterpreted as being single power laws. We do so by synthesising XRT light curves and fitting both single and broken power laws, and comparing the relative goodness of each fit via Monte Carlo analysis. Even with the well sampled light curves of the Swift era, these breaks may be left misidentified, hence caution is required when making definite statements on the absence of achromatic breaks.
Gamma-Ray Burst (GRB) afterglow observations in the Swift era have a perceived lack of achromatic jet breaks compared to the BeppoSAX, or pre-Swift era. Specifically, relatively few breaks, consistent with jet breaks, are observed in the X-ray light
In the redshift range z = 0-1, the gamma ray burst (GRB) redshift distribution should increase rapidly because of increasing differential volume sizes and strong evolution in the star formation rate. This feature is not observed in the Swift redshift
Gamma-ray Burst (GRB) collimation has been inferred with the observations of achromatic steepening in GRB light curves, known as jet breaks. Identifying a jet break from a GRB afterglow lightcurve allows a measurement of the jet opening angle and tru
We investigate the clustering of afterglow light curves observed at X-ray and optical wavelengths. We have constructed a sample of 61 bursts with known dis tance and X-ray afterglow. This sample includes bursts observed by BeppoSAX, XMM-Newton, Chand
We present the Hubble diagram (HD) of 66 Gamma Ray Bursts (GRBs) derived using only data from their X - ray afterglow lightcurve. To this end, we use the recently updated L_X - T_a correlation between the break time T_a and the X - ray luminosity L_X