ﻻ يوجد ملخص باللغة العربية
Gamma-ray Burst (GRB) collimation has been inferred with the observations of achromatic steepening in GRB light curves, known as jet breaks. Identifying a jet break from a GRB afterglow lightcurve allows a measurement of the jet opening angle and true energetics of GRBs. In this paper, we reinvestigate this problem using a large sample of GRBs that have an optical jet break which is consistent with being achromatic in the X-ray band. Our sample includes 99 GRBs from February 1997 to March 2015 that have optical and, for Swift GRBs, X-ray lightcurves that are consistent with the jet break interpretation. Out of 99 GRBs we have studied, 55 GRBs are found to have temporal and spectral behaviors both before and after the break consistent with the theoretical predictions of the jet break models, respectively. These include 53 long/soft (Type II) and 2 short/hard (Type I) GRBs. Only 1 GRB is classified as the candidate of a jet break with energy injection. Another 41 and 3 GRBs are classified as the candidates with the lower and upper limits of the jet break time, respectively. The typical beaming correction factor $f_b^{-1} sim 1000$ for Type II GRBs, suggesting an even higher total GRB event rate density in the universe. Both isotropic and jet-corrected energies have a wide span in their distributions. We also investigate several empirical correlations (Amati, Frail, Ghirlanda and Liang-Zhang) previously discussed in the literature. We find that in general most of these relations are less tight than before. The existence of early jet breaks and hence small opening angle jets, which were detected in the {em Swfit era}, is most likely the source of scatter. If one limits the sample to jet breaks later than $10^4$ s, the Liang-Zhang relation remains tight and the Ghirlanda relation still exists. These relations are derived from Type II GRBs, and Type I GRBs usually deviate from them.
The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of
The radiative process responsible for gamma-Ray Burst (GRB) prompt emission has not been identified yet. If dominated by fast-cooling synchrotron radiation, the part of the spectrum immediately below the $ u F_ u$ peak energy should display a power-l
A structured gamma-ray burst jet could explain the dimness of the prompt emission observed from GRB$,170817$A but the exact form of this structure is still ambiguous. However, with the promise of future joint gravitational wave and gamma-ray burst ob
Prompt gamma-ray burst (GRB) emission requires some mechanism to dissipate an ultrarelativistic jet. Internal shocks or some form of electromagnetic dissipation are candidate mechanisms. Any mechanism needs to answer basic questions, such as what is
The counter jet of a short gamma-ray burst (sGRB) has not yet been observed, while recent discoveries of gravitational waves (GWs) from a binary neutron star (NS) merger GW170817 and the associated sGRB 170817A have demonstrated that off-axis sGRB je