ترغب بنشر مسار تعليمي؟ اضغط هنا

Gamma-ray burst jet breaks revisited

159   0   0.0 ( 0 )
 نشر من قبل Xianggao Wang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Xiang-Gao Wang




اسأل ChatGPT حول البحث

Gamma-ray Burst (GRB) collimation has been inferred with the observations of achromatic steepening in GRB light curves, known as jet breaks. Identifying a jet break from a GRB afterglow lightcurve allows a measurement of the jet opening angle and true energetics of GRBs. In this paper, we reinvestigate this problem using a large sample of GRBs that have an optical jet break which is consistent with being achromatic in the X-ray band. Our sample includes 99 GRBs from February 1997 to March 2015 that have optical and, for Swift GRBs, X-ray lightcurves that are consistent with the jet break interpretation. Out of 99 GRBs we have studied, 55 GRBs are found to have temporal and spectral behaviors both before and after the break consistent with the theoretical predictions of the jet break models, respectively. These include 53 long/soft (Type II) and 2 short/hard (Type I) GRBs. Only 1 GRB is classified as the candidate of a jet break with energy injection. Another 41 and 3 GRBs are classified as the candidates with the lower and upper limits of the jet break time, respectively. The typical beaming correction factor $f_b^{-1} sim 1000$ for Type II GRBs, suggesting an even higher total GRB event rate density in the universe. Both isotropic and jet-corrected energies have a wide span in their distributions. We also investigate several empirical correlations (Amati, Frail, Ghirlanda and Liang-Zhang) previously discussed in the literature. We find that in general most of these relations are less tight than before. The existence of early jet breaks and hence small opening angle jets, which were detected in the {em Swfit era}, is most likely the source of scatter. If one limits the sample to jet breaks later than $10^4$ s, the Liang-Zhang relation remains tight and the Ghirlanda relation still exists. These relations are derived from Type II GRBs, and Type I GRBs usually deviate from them.



قيم البحث

اقرأ أيضاً

142 - Jens Hjorth 2013
The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bi-polar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star while the 56Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper I summarise the observational status of the supernova/gamma-ray burst connection in the context of the engine picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A -- with its luminous supernova but intermediate high-energy luminosity -- as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insight into supernova explosions in general.
The radiative process responsible for gamma-Ray Burst (GRB) prompt emission has not been identified yet. If dominated by fast-cooling synchrotron radiation, the part of the spectrum immediately below the $ u F_ u$ peak energy should display a power-l aw behavior with slope $alpha_2=-3/2$, which breaks to a higher value $alpha_1=-2/3$ (i.e. to a harder spectral shape) at lower energies. Prompt emission spectral data (usually available down to $sim10-20,$keV) are consistent with one single power-law behavior below the peak, with typical slope $langlealpharangle=-1$, higher than (and then inconsistent with) the expected value $alpha_2=-3/2$. To better characterize the spectral shape at low energy, we analyzed 14 GRBs for which the Swift X-ray Telescope started observations during the prompt. When available, Fermi-GBM observations have been included in the analysis. For 67% of the spectra, models that usually give a satisfactory description of the prompt (e.g., the Band model) fail in reproducing the $0.5-1000,$keV spectra: low-energy data outline the presence of a spectral break around a few keV.We then introduce an empirical fitting function that includes a low-energy power law $alpha_1$, a break energy $E_{rm break}$, a second power law $alpha_2$, and a peak energy $E_{rm peak}$. We find $langlealpha_1rangle=-0.66$ ($ rm sigma=0.35$), $langle log (E_{rm break}/rm keV)rangle=0.63$ ($ rm sigma=0.20$), $langlealpha_2rangle=-1.46$ ($rm sigma=0.31$), and $langle log (E_{rm peak}/rm keV)rangle=2.1$ ($ rm sigma=0.56$).The values $langlealpha_1rangle$ and $langlealpha_2rangle$ are very close to expectations from synchrotron radiation. In this context, $E_{rm break}$ corresponds to the cooling break frequency.
A structured gamma-ray burst jet could explain the dimness of the prompt emission observed from GRB$,170817$A but the exact form of this structure is still ambiguous. However, with the promise of future joint gravitational wave and gamma-ray burst ob servations, we shall be able to examine populations of binary neutron star mergers rather than a case-by-case basis. We present an analysis that considers gravitational wave triggered binary neutron star events both with and without short gamma-ray burst counterparts assuming that events without a counterpart were observed off-axis. This allows for Bayes factors to be calculated to compare different jet structure models. We perform model comparison between a Gaussian and power-law apparent jet structure on simulated data to demonstrate that the correct model can be distinguished with a log Bayes factor of $>5$ after less than 100 events. Constraints on the apparent structure jet model parameters are also made. After 25(100) events the angular width of the core of a power-law jet structure can be constrained within a $90%$ credible interval of width $ sim9.1(4.4)^{circ} $, and the outer beaming angle to be within $sim19.9(8.5)^{circ}$. Similarly we show the width of a Gaussian jet structure to be constrained to $sim2.8(1.6)^{circ}$.
Prompt gamma-ray burst (GRB) emission requires some mechanism to dissipate an ultrarelativistic jet. Internal shocks or some form of electromagnetic dissipation are candidate mechanisms. Any mechanism needs to answer basic questions, such as what is the origin of variability, what radius does dissipation occur at, and how does efficient prompt emission occur. These mechanisms also need to be consistent with how ultrarelativistic jets form and stay baryon pure despite turbulence and electromagnetic reconnection near the compact object and despite stellar entrainment within the collapsar model. We use the latest magnetohydrodynamical models of ultrarelativistic jets to explore some of these questions in the context of electromagnetic dissipation due to the slow collisional and fast collisionless reconnection mechanisms, as often associated with Sweet-Parker and Petschek reconnection, respectively. For a highly magnetized ultrarelativistic jet and typical collapsar parameters, we find that significant electromagnetic dissipation may be avoided until it proceeds catastrophically near the jet photosphere at large radii ($rsim 10^{13}--10^{14}{rm cm}$), by which the jet obtains a high Lorentz factor ($gammasim 100--1000), has a luminosity of $L_j sim 10^{50}--10^{51}ergs$, has observer variability timescales of order 1s (ranging from 0.001-10s), achieves $gammatheta_jsim 10--20 (for opening half-angle $theta_j$) and so is able to produce jet breaks, and has comparable energy available for both prompt and afterglow emission. This reconnection switch mechanism allows for highly efficient conversion of electromagnetic energy into prompt emission and associates the observed prompt GRB pulse temporal structure with dissipation timescales of some number of reconnecting current sheets embedded in the jet.[abridged]
The counter jet of a short gamma-ray burst (sGRB) has not yet been observed, while recent discoveries of gravitational waves (GWs) from a binary neutron star (NS) merger GW170817 and the associated sGRB 170817A have demonstrated that off-axis sGRB je ts are detectable. We calculate the prompt emission from the counter jet of an sGRB and show that it is typically 23-26 mag in the optical-infrared band 10-10^3 sec after the GWs for an sGRB 170817A-like event, which is brighter than the early macronova (or kilonova) emission and detectable by LSST in the near future. We also propose a new method to constrain the unknown jet properties, such as the Lorentz factor, opening angle, emission radii, and jet launch time, by observing both the forward and counter jets. To scrutinize the counter jets, space GW detectors like DECIGO are powerful in forecasting the merger time (<~ 1 sec) and position (<~ 1 arcmin) (~ a week) before the merger.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا