ﻻ يوجد ملخص باللغة العربية
We present the first results of the treatment of grain growth in our 3D, two-fluid (gas+dust) SPH code describing protoplanetary disks. We implement a scheme able to reproduce the variation of grain sizes caused by a variety of physical processes and test it with the analytical expression of grain growth given by Stepinski & Valageas (1997) in simulations of a typical T Tauri disk around a one solar mass star. The results are in agreement with a turbulent growing process and validate the method. We are now able to simulate the grain growth process in a protoplanetary disk given by a more realistic physical description, currently under development. We discuss the implications of the combined effect of grain growth and dust vertical settling and radial migration on subsequent planetesimal formation.
We present the first results of the treatment of grain growth in our 3D, two-fluid (gas+dust) SPH code describing protoplanetary disks. We implement a scheme able to reproduce the variation of grain sizes caused by a variety of physical processes and
Aims: In order to understand the first stages of planet formation, when tiny grains aggregate to form planetesimals, one needs to simultaneously model grain growth, vertical settling and radial migration of dust in protoplanetary disks. In this study
Turbulence is the dominant source of collisional velocities for grains with a wide range of sizes in protoplanetary disks. So far, only Kolmogorov turbulence has been considered for calculating grain collisional velocities, despite the evidence that
Context. Observations at sub-millimeter and mm wavelengths will in the near future be able to resolve the radial dependence of the mm spectral slope in circumstellar disks with a resolution of around a few AU at the distance of the closest star-formi
Turbulence in the protoplanetary disks induces collisions between dust grains, and thus facilitates grain growth. We investigate the two fundamental assumptions of the turbulence in obtaining grain collisional velocities -- the kinetic energy spectru