ترغب بنشر مسار تعليمي؟ اضغط هنا

A Submillimeter View of Circumstellar Dust Disks in $rho$ Ophiuchus

61   0   0.0 ( 0 )
 نشر من قبل Sean Andrews
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new multiwavelength submillimeter continuum measurements of the circumstellar dust around 48 young stars in the $rho$ Ophiuchus dark clouds. Supplemented with previous 1.3 mm observations of an additional 99 objects from the literature, the statistical distributions of disk masses and submillimeter colors are calculated and compared to those in the Taurus-Auriga region. These basic submillimeter properties of young stellar objects in both environments are shown to be essentially identical. As with their Taurus counterparts, the $rho$ Oph circumstellar dust properties are shown to evolve along an empirical evolution sequence based on the infrared spectral energy distribution. The combined $rho$ Oph and Taurus Class II samples (173 sources) are used to set benchmark values for basic outer disk characteristics: M_disk ~ 0.005 solar masses, M_disk/M_star ~ 1%, and $alpha$ ~ 2 (where $F_{ u} propto u^{alpha}$ between 350 microns and 1.3 mm). The precision of these numbers are addressed in the context of substantial solid particle growth in the earliest stages of the planet formation process. There is some circumstantial evidence that disk masses inferred from submillimeter emission may be under-estimated by up to an order of magnitude.

قيم البحث

اقرأ أيضاً

Four Ophiuchus binaries, two Class I systems and two Class II systems, with separations of ~450-1100 AU, were observed with the Owens Valley Radio Observatory (OVRO) millimeter interferometer. In each system, the 3 mm continuum maps show dust emissio n at the location of the primary star, but no emission at the position of the secondary. This result is different from observations of less evolved Class 0 binaries, in which dust emission is detected from both sources. The nondetection of secondary disks is, however, similar to the dust distribution seen in wide Class II Taurus binaries. The combined OVRO results from the Ophiuchus and Taurus binaries suggest that secondary disk masses are significantly lower than primary disk masses by the Class II stage, with initial evidence that massive secondary disks are reduced by the Class I stage. Although some of the secondaries retain hot inner disk material, the early dissipation of massive outer disks may negatively impact planet formation around secondary stars. Masses for the circumprimary disks are within the range of masses measured for disks around single T Tauri stars and, in some cases, larger than the minimum mass solar nebula. More massive primary disks are predicted by several formation models and are broadly consistent with the observations. Combining the 3 mm data with previous 1.3 mm observations, the dust opacity power-law index for each primary disk is estimated. The opacity index values are all less than the scaling for interstellar dust, possibly indicating grain growth within the circumprimary disks.
We present a high angular resolution ($sim 0.2^{primeprime}$), high sensitivity ($sigma sim 0.2$ mJy) survey of the 870 $mu$m continuum emission from the circumstellar material around 49 pre-main sequence stars in the $rho$ Ophiuchus molecular cloud. Because most millimeter instruments have resided in the northern hemisphere, this represents the largest high-resolution, millimeter-wave survey of the circumstellar disk content of this cloud. Our survey of 49 systems comprises 63 stars; we detect disks associated with 29 single sources, 11 binaries, 3 triple systems and 4 transition disks. We present flux and radius distributions for these systems; in particular, this is the first presentation of a reasonably complete probability distribution of disk radii at millimeter-wavelengths. We also compare the flux distribution of these protoplanetary disks with that of the disk population of the Taurus-Auriga molecular cloud. We find that disks in binaries are both significantly smaller and have much less flux than their counterparts around isolated stars. We compute truncation calculations on our binary sources and find that these disks are too small to have been affected by tidal truncation and posit some explanations for this. Lastly, our survey found 3 candidate gapped disks, one of which is a newly identified transition disk with no signature of a dip in infrared excess in extant observations.
107 - L. Testi , A. Natta , A. Scholz 2016
The study of the properties of disks around young brown dwarfs can provide important clues on the formation of these very low-mass objects and on the possibility of forming planetary systems around them. The presence of warm dusty disks around brown dwarfs is well known, based on near- and mid-infrared studies. High angular resolution observations of the cold outer disk are limited; we used ALMA to attempt a first survey of young brown dwarfs in the $rho$-Oph star-forming region. All 17 young brown dwarfs in our sample were observed at 890 $mu $m in the continuum at $sim0.!^{primeprime}5$ angular resolution. The sensitivity of our observations was chosen to detect $sim0.5$ M$_oplus$ of dust. We detect continuum emission in 11 disks ($sim65$% of the total), and the estimated mass of dust in the detected disks ranges from $sim0.5$ to $sim6$ M$_oplus$. These disk masses imply that planet formation around brown dwarfs may be relatively rare and that the supra-Jupiter mass companions found around some brown dwarfs are probably the result of a binary system formation. We find evidence that the two brightest disks in $rho$-Oph have sharp outer edges at R<~25 AU, in contrast to disks around Taurus brown dwarfs. This difference may suggest that the different environment in $rho$-Oph may lead to significant differences in disk properties. A comparison of the M$_{disk}$/M$_ast$ ratio for brown dwarf and solar-mass systems also shows a possible deficit of mass in brown dwarfs, which could support the evidence for dynamical truncation of disks in the substellar regime. These findings are still tentative and need to be put on firmer grounds by studying the gaseous disks around brown dwarfs and by performing a more systematic and unbiased survey of the disk population around the more massive stars.
74 - David W. Koerner 1999
A clear understanding of the chemical processing of matter, as it is transferred from a molecular cloud to a planetary system, depends heavily on knowledge of the physical conditions endured by gas and dust as these accrete onto a disk and are incorp orated into planetary bodies. Reviewed here are astrophysical observations of circumstellar disks which trace their evolving properties. Accretion disks that are massive enough to produce a solar system like our own are typically larger than 100 AU. This suggests that the chemistry of a large fraction of the infalling material is not radically altered upon contact with a vigorous accretion shock. The mechanisms of accretion onto the star and eventual dispersal are not yet well understood, but timescales for the removal of gas and optically thick dust appear to be a few times 10$^6$ yrs. At later times, tenuous ``debris disks of dust remain around stars as old as a few times 10$^8$ yrs. Features in the morphology of the latter, such as inner holes, warps, and azimuthal asymmetries, are likely to be the result of the dynamical influence of large planetary bodies. Future observations will enlighten our understanding of chemical evolution and will focus on the search for disks in transition from a viscous accretion stage to one represented by a gas-free assemblage of colliding planetesimals. In the near future, comparative analysis of circumstellar dust and gas properties within a statistically significant sample of young stars at various ages will be possible with instrumentation such as SIRTF and SOFIA. Well-designed surveys will help place solar system analogs in a general context of a diversity of possible pathways for circumstellar evolution, one which encompasses the formation of stellar and brown-dwarf companions as well as planetary systems.
86 - O. Schuetz 2004
We present results of a coronographic imaging search for circumstellar dust disks with the Adaptive Optics Near Infrared System (ADONIS) at the ESO 3.6m telescope in La Silla (Chile). 22 candidate stars, known to be orbited by a planet or to show inf rared excess radiation, were examined for circumstellar material. In the PSF-subtracted images no clear disk was found. We further determine the detection sensitivities and outline how remaining atmospheric fluctuations still can hamper adaptive optics observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا