ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributive lattices defined for representations of rank two semisimple Lie algebras

384   0   0.0 ( 0 )
 نشر من قبل Robert G. Donnelly
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For a rank two root system and a pair of nonnegative integers, using only elementary combinatorics we construct two posets. The constructions are uniform across the root systems A1+A1, A2, C2, and G2. Examples appear in Figures 3.2 and 3.3. We then form the distributive lattices of order ideals of these posets. Corollary 5.4 gives elegant quotient-of-products expressions for the rank generating functions of these lattices (thereby providing answers to a 1979 question of Stanley). Also, Theorem 5.3 describes how these lattices provide a new combinatorial setting for the Weyl characters of representations of rank two semisimple Lie algebras. Most of these lattices are new; the rest of them (or related structures) have arisen in work of Stanley, Kashiwara, Nakashima, Littelmann, and Molev. In a future paper, one author shows that the posets constructed here form a Dynkin diagram-indexed answer to a combinatorially posed classification question. In a companion paper, some of these lattices are used to explicitly construct some representations of rank two semisimple Lie algebras. This implies that these lattices are strongly Sperner.



قيم البحث

اقرأ أيضاً

The multiplicity of a weight in a finite-dimensional irreducible representation of a simple Lie algebra g can be computed via Kostants weight multiplicity formula. This formula consists of an alternating sum over the Weyl group (a finite group) and i nvolves a partition function known as Kostants partition function. Motivated by the observation that, in practice, most terms in the sum are zero, our main results describe the elements of the Weyl alternation sets. The Weyl alternation sets are subsets of the Weyl group which contributes nontrivially to the multiplicity of a weight in a highest weight representation of the Lie algebras so_4(C), so_5(C), sp_4(C), and the exceptional Lie algebra g_2. By taking a geometric approach, we extend the work of Harris, Lescinsky, and Mabie on sl_3(C), to provide visualizations of these Weyl alternation sets for all pairs of integral weights lambda and mu of the Lie algebras considered.
Let g be a finite dimensional complex semisimple Lie algebra, and let V be a finite dimensional represenation of g. We give a closed formula for the mth Frobenius-Schur indicator, m>1, of V in representation-theoretic terms. We deduce that the indica tors take integer values, and that for a large enough m, the mth indicator of V equals the dimension of the zero weight space of V. For the classical Lie algebras sl(n), so(2n), so(2n+1) and sp(2n), this is the case for m greater or equal to 2n-1, 4n-5, 4n-3 and 2n+1, respectively.
We prove most of Lusztigs conjectures from the paper Bases in equivariant K-theory II, including the existence of a canonical basis in the Grothendieck group of a Springer fiber. The conjectures also predict that this basis controls numerics of repre sentations of the Lie algebra of a semi-simple algebraic group over an algebraically closed field of positive characteristic. We check this for almost all characteristics. To this end we construct a non-commutative resolution of the nilpotent cone which is derived equivalent to the Springer resolution. On the one hand, this noncommutative resolution is shown to be compatible with the positive characteristic version of Beilinson-Bernstein localization equivalences. On the other hand, it is compatible with the t-structure arising from the equivalence of Arkhipov-Bezrukavnikov with the derived category of perverse sheaves on the affine flag variety of the Langlands dual group, which was inspired by local geometric Langlands duality. This allows one to apply Frobenius purity theorem to deduce the desired properties of the basis. We expect the noncommutative counterpart of the Springer resolution to be of independent interest from the perspectives of algebraic geometry and geometric Langlands duality.
A theory of cyclic elements in semisimple Lie algebras is developed. It is applied to an explicit construction of regular elements in Weyl groups.
In this paper we study the isotypic decomposition of the regular module of a finite-dimensional Hopf algebra over an algebraically closed field of characteristic zero. For a semisimple Hopf algebra, the idempotents realizing the isotypic decompositio n can be explicitly expressed in terms of characters and the Haar integral. In this paper we investigate Hopf algebras with the Chevalley property, which are not necessarily semisimple. We find explicit expressions for idempotents in terms of Hopf-algebraic data, where the Haar integral is replaced by the regular character of the dual Hopf algebra. For a large class of Hopf algebras, these are shown to form a complete set of orthogonal idempotents. We give an example which illustrates that the Chevalley property is crucial.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا