ﻻ يوجد ملخص باللغة العربية
We prove most of Lusztigs conjectures from the paper Bases in equivariant K-theory II, including the existence of a canonical basis in the Grothendieck group of a Springer fiber. The conjectures also predict that this basis controls numerics of representations of the Lie algebra of a semi-simple algebraic group over an algebraically closed field of positive characteristic. We check this for almost all characteristics. To this end we construct a non-commutative resolution of the nilpotent cone which is derived equivalent to the Springer resolution. On the one hand, this noncommutative resolution is shown to be compatible with the positive characteristic version of Beilinson-Bernstein localization equivalences. On the other hand, it is compatible with the t-structure arising from the equivalence of Arkhipov-Bezrukavnikov with the derived category of perverse sheaves on the affine flag variety of the Langlands dual group, which was inspired by local geometric Langlands duality. This allows one to apply Frobenius purity theorem to deduce the desired properties of the basis. We expect the noncommutative counterpart of the Springer resolution to be of independent interest from the perspectives of algebraic geometry and geometric Langlands duality.
We describe the Springer correspondence explicitly for exceptional Lie algebras of type $G_2$ and $F_4$ and their duals in bad characteristics, i.e. in characteristics 2 and 3.
We construct a family of homomorphisms between Weyl modules for affine Lie algebras in characteristic p, which supports our conjecture on the strong linkage principle in this context. We also exhibit a large class of reducible Weyl modules beyond level one, for p not necessarily small.
Let $G$ be a simply connected algebraic group of type $B,C$ or $D$ over an algebraically closed field of characteristic 2. We construct a Springer correspondence for the dual vector space of the Lie algebra of $G$. In particular, we classify the nilp
Let $G$ be an adjoint algebraic group of type $B$, $C$, or $D$ over an algebraically closed field of characteristic 2. We construct a Springer correspondence for the Lie algebra of $G$. In particular, for orthogonal Lie algebras in characteristic 2,
In arXiv:1001.2562 a certain non-commutative algebra $A$ was defined starting from a semi-simple algebraic group, so that the derived category of $A$-modules is equivalent to the derived category of coherent sheaves on the Springer (or Grothendieck-S