ﻻ يوجد ملخص باللغة العربية
We propose a two-color scheme of atom guide and 1D optical lattice using evanescent light fields of different transverse modes. The optical waveguide carries a red-detuned light and a blue-detuned light, with both modes far from resonance. The atom guide and 1D optical lattice potentials can be transformed to each other by using a Mach-Zehnder interferometer to accurately control mode transformation. This might provide a new approach to realize flexible transition between the guiding and trapping states of atoms.
Transits of single atoms through higher-order Hermite-Gaussian transverse modes of a high-finesse optical cavity are observed. Compared to the fundamental Gaussian mode, the use of higher-order modes increases the information on the atomic position.
Many theoretical and experimental investigations have presented a conclusion that evanescent electromagnetic modes can superluminally propagate. However, in this paper, we show that the average energy velocity of evanescent modes inside a cut-off wav
We perform an analytic calculation of the color fields in heavy-ion collisions by considering the collision of longitudinally extended nuclei in the dilute limit of the Color Glass Condensate effective field theory of high-energy QCD. Based on genera
We report the experimental observation of strong two-color optical nonlinearity in an ultracold gas of $^{85}mathrm{Rb}$-$^{87}mathrm{Rb}$ atom mixture. By simultaneously coupling two probe transitions of $^{85}$Rb and $^{87}$Rb atoms to Rydberg stat
Contrary to mechanical waves, the two-slit interference experiment of single photons shows that the behavior of classical electromagnetic waves corresponds to the quantum mechanical one of single photons, which is also different from the quantum-fiel