ﻻ يوجد ملخص باللغة العربية
Contrary to mechanical waves, the two-slit interference experiment of single photons shows that the behavior of classical electromagnetic waves corresponds to the quantum mechanical one of single photons, which is also different from the quantum-field-theory behavior such as the creations and annihilations of photons, the vacuum fluctuations, etc. Owing to a purely quantum effect, quantum tunneling particles including tunneling photons (evanescent modes) can propagate over a spacelike interval without destroying causality. With this picture we conclude that the superluminality of evanescent modes is a quantum mechanical rather than a classical phenomenon.
Applying the fact that guided photons inside a waveguide can be treated as massive particles, one can study the superluminality of evanescent modes via showing that a massive particle can propagate over a spacelike interval, which corresponds to quan
Many theoretical and experimental investigations have presented a conclusion that evanescent electromagnetic modes can superluminally propagate. However, in this paper, we show that the average energy velocity of evanescent modes inside a cut-off wav
In this work we consider a possible conceptual similarity between recent, amazing OPERA experiment of the superluminal propagation of neutrino and experiment of the gain-assisted superluminal light propagation realized about ten years ago. Last exper
Using a single channel active Raman gain medium we show a $(220pm 20)$ns advance time for an optical pulse of $tau_{FWHM}=15.4 mu$s propagating through a 10 cm medium, a lead time that is comparable to what was reported previously. In addition, we ha
We study whether a violation of the null energy condition necessarily implies the presence of instabilities. We prove that this is the case in a large class of situations, including isotropic solids and fluids relevant for cosmology. On the other han