ﻻ يوجد ملخص باللغة العربية
A combined experimental and computational investigation of coupling between polarization and epitaxial strain in highly polar ferroelectric PbZr_0.2Ti_0.8O_3 (PZT) thin films is reported. A comparison of the properties of relaxed (tetragonality c/a = 1.05) and highly-strained (c/a = 1.09) epitaxial films shows that polarization, while being amongst the highest reported for PZT or PbTiO_3 in either film or bulk forms (P_r = 82 microC/cm^2), is almost independent of the epitaxial strain. We attribute this behavior to a suppressed sensitivity of the A-site cations to epitaxial strain in these Pb-based perovskites, where the ferroelectric displacements are already large, contrary to the case of less polar perovskites, such as BaTiO_3. In the latter case, the A-site cation (Ba) and equatorial oxygen displacements can lead to substantial polarization increases.
Epitaxial strain plays an important role in determining physical properties of perovskite ferroelectric oxide thin films. However, it is very challenging to directly measure properties such as polarization in ultrathin strained films using traditiona
The $phi(kpp)sim kpp$ relation is called polarization structure. By density functional calculations, we study the polarization structure in ferroelectric perovskite PbTiO$_3$, revealing (1) the $kpp$ point that contributes most to the electronic pola
Using density-functional calculations we study the structure and polarization response of tetragonal PbTiO3, BaTiO3 and SrTiO3 in a strain regime that is previously overlooked. Different from common expectations, we find that the polarizations in all
Ferroelectric BaTiO3 films with large polarization have been integrated with Si(001) by pulsed laser deposition. High quality c-oriented epitaxial films are obtained in a substrate temperature range of about 300 deg C wide. The deposition temperature
Using a Ginzburg--Landau--Devonshire model that includes the coupling of polarization to strain, we calculate the fluctuation spectra of ferroelectric domain walls. The influence of the strain coupling differs between 180 degree and 90 degree walls d