ﻻ يوجد ملخص باللغة العربية
Using a Ginzburg--Landau--Devonshire model that includes the coupling of polarization to strain, we calculate the fluctuation spectra of ferroelectric domain walls. The influence of the strain coupling differs between 180 degree and 90 degree walls due to the different strain profiles of the two configurations. The finite speed of acoustic phonons, $v_s$, retards the response of the strain to polarization fluctuations, and the results depend on $v_s$. For $v_s to infty$, the strain mediates an instantaneous electrostrictive interaction, which is long-range in the 90 degree wall case. For finite $v_s$, acoustic phonons damp the wall excitations, producing a continuum in the spectral function. As $v_s to 0$, a gapped mode emerges, which corresponds to the polarization oscillating in a fixed strain potential.
We study the effect of depolarization field related with inhomogeneous polarization distribution, strain and surface energy parameters on a domain wall profile near the surface of a ferroelectric film within the framework of Landau-Ginzburg-Devonshir
Chiral magnetic materials provide a number of challenging issues such as the highly efficient domain wall (DW) and skyrmion motions driven by electric current, as of the operation principles of emerging spintronic devices. The DWs in the chiral mater
A phenomenological treatment of domain walls based on the Ginzburg-Landau-Devonshire theory is developed for uniaxial, trigonal ferroelectrics lithium niobate and lithium tantalate. The contributions to the domain wall energy from polarization and st
We investigate ferrimagnetic domain wall dynamics induced by circularly polarized spin waves theoretically and numerically. We find that the direction of domain wall motion depends on both the circular polarization of spin waves and the sign of net s
Domains and domain walls are among the key factors that determine the performance of ferroelectric materials. In recent years, a unique type of domain walls, i.e., the sawtooth-shaped domain walls, has been observed in BiFeO$_{3}$ and PbTiO$_{3}$. He