ﻻ يوجد ملخص باللغة العربية
We consider a cognitive network consisting of n random pairs of cognitive transmitters and receivers communicating simultaneously in the presence of multiple primary users. Of interest is how the maximum throughput achieved by the cognitive users scales with n. Furthermore, how far these users must be from a primary user to guarantee a given primary outage. Two scenarios are considered for the network scaling law: (i) when each cognitive transmitter uses constant power to communicate with a cognitive receiver at a bounded distance away, and (ii) when each cognitive transmitter scales its power according to the distance to a considered primary user, allowing the cognitive transmitter-receiver distances to grow. Using single-hop transmission, suitable for cognitive devices of opportunistic nature, we show that, in both scenarios, with path loss larger than 2, the cognitive network throughput scales linearly with the number of cognitive users. We then explore the radius of a primary exclusive region void of cognitive transmitters. We obtain bounds on this radius for a given primary outage constraint. These bounds can help in the design of a primary network with exclusive regions, outside of which cognitive users may transmit freely. Our results show that opportunistic secondary spectrum access using single-hop transmission is promising.
We study two distinct, but overlapping, networks that operate at the same time, space, and frequency. The first network consists of $n$ randomly distributed emph{primary users}, which form either an ad hoc network, or an infrastructure-supported ad h
We study the high-power asymptotic behavior of the sum-rate capacity of multi-user interference networks with an equal number of transmitters and receivers. We assume that each transmitter is cognizant of the message it wishes to convey to its corres
We address the optimization of the sum rate performance in multicell interference-limited singlehop networks where access points are allowed to cooperate in terms of joint resource allocation. The resource allocation policies considered here combine
This paper is concerned with decentralized estimation of a Gaussian source using multiple sensors. We consider a diversity scheme where only the sensor with the best channel sends their measurements over a fading channel to a fusion center, using the
This paper considers a Gaussian multiple-access channel with random user activity where the total number of users $ell_n$ and the average number of active users $k_n$ may grow with the blocklength $n$. For this channel, it studies the maximum number