تم اعتبار تحيز التعرض مشكلة مركزية لنماذج اللغة التراجعية التلقائية (LM). وهذا يدعي أن المعلم يجبر سيؤدي إلى تشويه جيل وقت الاختبار تدريجيا بسبب تباين توليد التدريب. على الرغم من أن الكثير من الخوارزميات قد اقترحت تجنب التغلب على المعلم وبالتالي تخفيف تحيز التعرض، إلا أن هناك ضئيل من العمل الذي يظهر مدى خطورة مشكلة تحيز التعرض في الواقع. في هذا العمل، نركز على مهمة توليد اللغة المفتوح العضوية، اقترح المقاييس لتحديد تأثير تحيز التعرض في جوانب الجودة والتنوع والاتساق. الحدس الرئيسي الخاص بنا هو أنه إذا قمت بإطعام بادئات بيانات الحقيقة الأرضية (بدلا من البادئات الناتجة عن النموذج نفسه) في النموذج واطلب من مواصلة الجيل، يجب أن يصبح الأداء أفضل بكثير لأن التناقض في توليد التدريب في البادئة إزالة. يتم إجراء التقييمات التلقائية والإنسانية في تجاربنا. على عكس الاعتقاد الشعبي بتحيز التعرض، نجد أن التشويه الناجم عن تناقض البادئة محدود، ولا يبدو أنه تدريجي خلال الجيل. علاوة على ذلك، يكشف تحليلنا عن قدرة مثيرة للاهتمام للانكماش الذاتي ل LM، والتي نفترض أنها تكافؤها لتكون مواجهة الآثار الضارة من تحيز التعرض.
Exposure bias has been regarded as a central problem for auto-regressive language models (LM). It claims that teacher forcing would cause the test-time generation to be incrementally distorted due to the training-generation discrepancy. Although a lot of algorithms have been proposed to avoid teacher forcing and therefore alleviate exposure bias, there is little work showing how serious the exposure bias problem actually is. In this work, we focus on the task of open-ended language generation, propose metrics to quantify the impact of exposure bias in the aspects of quality, diversity, and consistency. Our key intuition is that if we feed ground-truth data prefixes (instead of prefixes generated by the model itself) into the model and ask it to continue the generation, the performance should become much better because the training-generation discrepancy in the prefix is removed. Both automatic and human evaluations are conducted in our experiments. On the contrary to the popular belief in exposure bias, we find that the the distortion induced by the prefix discrepancy is limited, and does not seem to be incremental during the generation. Moreover, our analysis reveals an interesting self-recovery ability of the LM, which we hypothesize to be countering the harmful effects from exposure bias.
المراجع المستخدمة
https://aclanthology.org/
يؤثر البحث على الإنترنت على إدراك الناس في العالم، وبالتالي فإن التخفيف من التحيزات في نتائج البحث ونماذج التعلم العادلة أمر حتمي للجيدة الاجتماعية.نحن ندرس تحيز جنساني فريد من نوعه في البحث في الصورة في هذا العمل: غالبا ما تكون صور البحث في كثير من
في هذه الورقة، نقدم مساهمة مشتركة من المهمة المشتركة ومقاييس WMT 2021.مع تركيز هذا العام على متري الجودة متعددة الأبعاد (MQM) باعتباره التقييم البشري الحقيقة الأرضية، كان هدفنا هو توجيه المذنب نحو الارتباطات الأعلى مع MQM.نحن نقوم بذلك عن طريق التدري
تصنيف النص التجريدي هو مشكلة مدروسة على نطاق واسع ولها تطبيقات واسعة. في العديد من مشاكل العالم الحقيقي، يعد عدد النصوص الخاصة بنماذج تصنيف التدريب محدودا، مما يجعل هذه النماذج عرضة للجيش. لمعالجة هذه المشكلة، نقترح SSL-REG، نهج التنظيم المعتمد على ا
مجردة ⚠ تحتوي هذه الورقة على مطالبات ونواتج النماذج المسيئة في الطبيعة. عند التدريب على الزحف الكبيرة وغير المرفقة من الإنترنت، تلتقط نماذج اللغة وإعادة إنتاج جميع أنواع التحيزات غير المرغوب فيها التي يمكن العثور عليها في البيانات: أنها غالبا ما تولد
نظرا للتدريب الفعال من خلال التدريب والطلاقة في النصوص المتولدة، يتم اقتراح العديد من النماذج القائمة على إطار ترميز وحدة فك الترميز في مؤخرا للأجيال إلى نص البيانات. الترميز المناسب لبيانات الإدخال هو جزء أساسي من نماذج وحدة فك التشفير هذه. ومع ذلك،