المحادثات التي تهدف إلى تحديد التوصيات الجيدة هي تكرار الطبيعة. غالبا ما يعبر الناس عن تفضيلاتهم من حيث نقد التوصية الحالية (على سبيل المثال، لا يبدو جيدا لتاريخ "")، مما يتطلب درجة من الحس السليم للحصول على تفضيل يستنتج. في هذا العمل، نقدم طريقة لتحويل نقد المستخدم إلى تفضيل إيجابي (E.G.، أفضل المزيد من الرومانسية ") من أجل استرداد المراجعات المتعلقة بالتوصيات التي يحتمل أن تكون أفضل (على سبيل المثال، مثالية لعشاء رومانسي"). نستفيد نموذجا كبيرا باللغة العصبية (LM) في بيئة قليلة لإجراء تحول من النقد إلى التفضيل، ونحن نختبر طريقتين لاسترداد التوصيات: واحد يطابق المضبوطات، وآخر أن يضغط غرامة على المهمة وبعد نحن نبذ هذا النهج في مجال المطعم وتقييمه باستخدام مجموعة بيانات جديدة من انتقادات المطعم. في دراسة الاجتثاث، نوضح أن استخدام التحول في النقد إلى تحسين التوصيات يحسن التوصيات، وأن هناك ثلاثة قضايا عامة على الأقل تفسر هذا الأداء المحسن.
Conversations aimed at determining good recommendations are iterative in nature. People often express their preferences in terms of a critique of the current recommendation (e.g., It doesn't look good for a date''), requiring some degree of common sense for a preference to be inferred. In this work, we present a method for transforming a user critique into a positive preference (e.g., I prefer more romantic'') in order to retrieve reviews pertaining to potentially better recommendations (e.g., Perfect for a romantic dinner''). We leverage a large neural language model (LM) in a few-shot setting to perform critique-to-preference transformation, and we test two methods for retrieving recommendations: one that matches embeddings, and another that fine-tunes an LM for the task. We instantiate this approach in the restaurant domain and evaluate it using a new dataset of restaurant critiques. In an ablation study, we show that utilizing critique-to-preference transformation improves recommendations, and that there are at least three general cases that explain this improved performance.
المراجع المستخدمة
https://aclanthology.org/
في هذه الورقة، نقدم مجموعة بيانات توصية ثنائية اللغة بالتوازي ثنائية اللغة (Dreecdial 2.0) لتمكين الباحثين من استكشاف مهمة صعبة في توصية محادثة متعددة اللغات ومتعددة اللغات. الفرق بين Dreecdial 2.0 ومجموعات بيانات توصية المحادثة الحالية هو أن عنصر ال
الكشف عن اللغة المسيئة هو حقل ناشئ في معالجة اللغة الطبيعية تلقت قدرا كبيرا من الاهتمام مؤخرا.لا يزال نجاح الكشف التلقائي محدود.لا سيما، كشف اللغة المسيئة ضمنيا، أي لغة مسيئة لا تنقلها كلمات مسيئة (مثل dumbass أو حثالة)، لا تعمل بشكل جيد.في هذه الورق
توفر شعبية المتزايدة للمساعدين الشخصيين في الصوت فرصا جديدة لتوصية المحادثة. يتمثل أحد المجالات الممتعة بشكل خاص توصية الفيلم، والتي يمكن أن تستفيد من تفاعل مفتوح العضوية مع المستخدم، من خلال محادثة طبيعية. نستكشف إحدى الاتجاه الواعد لتوصية المحادثة:
تم إحراك المصالح المتزايدة في أنظمة الموافقة على المحادثة (CRS)، والتي تستكشف تفضيل المستخدم من خلال تفاعلات المحادثة من أجل تقديم توصية مناسبة. ومع ذلك، لا يزال هناك نقص في القدرة في CRS الحالية إلى (1) اجتياز مسارات التفكير المتعددة على المعرفة الأ
أشار العمل السابق إلى أن النماذج اللغوية المحددة مسبقا (MLMS) غير فعالة مثل تشفير المعجمات المعجمية والجملة العالمية خارج الرف، أي دون مزيد من ضبط الدقيقة بشكل جيد على NLI أو تشابه الجملة أو إعادة الصياغة المهام باستخدام بيانات المهام المشروحة وبعد ف