ترغب بنشر مسار تعليمي؟ اضغط هنا

تمديد، لا إعادة بناء: صيغة الرسم البياني الشرطي التعديل كوسسل تسلسل تلقائي

Extend, don't rebuild: Phrasing conditional graph modification as autoregressive sequence labelling

392   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

أصبحت الرسوم البيانية المستمدة وتعديل الرسوم البيانية من نص اللغة الطبيعية تقنية أساس متعدد الاستخدامات لاستخراج المعلومات مع التطبيقات في العديد من المواد الفرعية، مثل بناء الرسم البياني الدلالي أو المعرفة الرسم البياني. استخدم العمل الأخير هذه التقنية لتعديل الرسوم البيانية المشهد (هو et al. 2020)، من خلال الترميز أولا الرسم البياني الأصلي ثم إنشاء واحد المعدلة بناء على هذا الترميز. في هذا العمل، نوضح أنه يمكننا زيادة الأداء بشكل كبير في هذه المشكلة من خلال صياغة ذلك كملحق رسم بياني بدلا من جيل الرسم البياني. نقترح النموذج الأول لمشكلة امتداد الرسم البياني الناتج استنادا إلى وضع العلامات التسلسل التلقائي. في مجموعات بيانات تعديل الرسم البياني المشهد، يؤدي هذا الصيانة إلى تحسينات في الدقة على أحدث من بين الفنين بين 13 نقطة مئوية 24 نقطة. علاوة على ذلك، نقدم بيانات جديدة مجموعة من المجال الطبي الطبيعي والتي لديها تقلب لغوي أكبر بكثير ورسم رسوم بيانية أكثر تعقيدا من مجموعات بيانات تعديل الرسم البياني المشهد. بالنسبة إلى مجموعة البيانات هذه، فشلت حالة الفن في التعميم، في حين أن طرازنا يمكن أن ينتج تنبؤات ذات مغزى.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تطبيقات اللغة الطبيعية المعقدة مثل ترجمة الكلام أو الترجمة المحورية تعتمد تقليديا على النماذج المتتالية. ومع ذلك، من المعروف أن النماذج المتتالية عرضة لتوسيع الأخطاء ومشاكل التناقض النموذجي. علاوة على ذلك، لا توجد إمكانية لاستخدام بيانات التدريب المن اسبة في النظم المتتالية التقليدية، مما يعني أن البيانات التدريبية الأكثر ملاءمة للمهمة لا يمكن استخدامها. اقترحت الدراسات الفقيرة عدة طرق تدريبية للتدريب المنتهي المتكاملة للتغلب عليها مشاكل، ومع ذلك، فإنهم يعتمدون في الغالب على بيانات ثلاثية الاتجاه (الاصطناعية أو الطبيعية). نقترح نموذجا متماثلا يعتمد على المحول غير التلقائي الذي يتيح التدريب المنتهي دون الحاجة إلى تمثيل واضح وسيط. تتجنب هذه الهندسة المعمارية الجديدة (I) القرارات المبكرة غير الضرورية التي يمكن أن تسبب أخطاء يتم نشرها بعد ذلك في جميع النماذج المتتالية (II) باستخدام بيانات التدريب المناسبة مباشرة. نحن نقوم بإجراء تقييم على مهام ترجمة من الآلة المحورية، وهي الفرنسية → الألمانية والألمانية → جمهورية التشيك. تظهر نتائجنا التجريبية أن الهندسة المعمارية المقترحة تعطي تحسنا أكثر من 2 بلو للفرنسية → الألمانية على خط الأساس المتتالي.
خريطة العقل هي رسم تخطيطي يمثل المفهوم المركزي والأفكار الرئيسية بطريقة هرمية. سيؤدي تحويل النص العادي إلى خريطة ذهنية إلى الكشف عن هيكلها الدلالي الرئيسي وتكون أسهل في فهمه. بالنظر إلى وثيقة، تستخرج طريقة جيل خريطة العقل التلقائي الحالية علاقات كل ز وج جملة لتوليد الرسم البياني الدلالي الموجه لهذا المستند. تزداد تعقيد الحساب بشكل كبير مع طول الوثيقة. علاوة على ذلك، من الصعب التقاط الدلالات الإجمالية. للتعامل مع التحديات المذكورة أعلاه، نقترح شبكة جيل مخريطة العقل الفعالة تقوم بتحويل وثيقة إلى رسم بياني عبر الرسوم البيانية بالتسلسل إلى الرسم البياني. لضمان خريطة ذهنية ذات مغزى، نقوم بتصميم وحدة تحويل رسم بياني لضبط الرسم البياني العلاقة بطريقة تعليمية للتعزيز. تظهر النتائج التجريبية الواسعة أن النهج المقترح أكثر فعالية وكفاءة من الأساليب الحالية. يتم تقليل وقت الاستدلال بآلاف المرات مقارنة بالطرق الحالية. تتحقق دراسات الحالة أن خرائط العقل التي تم إنشاؤها بشكل أفضل تكشف عن الهياكل الدلالية الأساسية للوثيقة.
الحكم من الانصهار هي مهمة توليد مشروطة تدمج العديد من الجمل ذات الصلة في واحدة متماسكة، والتي يمكن اعتبارها عقوبة ملخص. منذ فترة طويلة تم الاعتراف بأهمية الانصهار منذ فترة طويلة من قبل المجتمعات في توليد اللغة الطبيعية، وخاصة في تلخيص النص. لا يزال ي مثل تحديا لنموذج لخصي مخبئي عصبي لإنشاء عقوبة ملخص متكاملة جيدا. في هذه الورقة، نستكشف طريقة انصهار الجملة الفعالة في سياق تلخيص النص. نقترح إنشاء رسم بياني حدث من جمل المدخلات لالتقاط الأحداث ذات الصلة بفعالية وتنظيمها بطريقة منظمة واستخدام الرسم البياني الحدث الذي تم إنشاؤه لتوجيه الانصهار الجملة. بالإضافة إلى الاستفادة من الاهتمام على محتوى الجمل والعقد الرسم البياني، فإننا نضع كذلك آلية انتباه تدفق الرسوم البيانية للتحكم في عملية الانصهار عبر بنية الرسم البياني. عند تقييم بيانات خلطة الجملة التي تم بناؤها من مجموعة بيانات ملخصة، CNN / DALIYMAIL ومتعدد الأخبار، يظهر طرازنا لتحقيق أدائه الحديث من حيث الحزام وغيرها من المقاييس مثل معدل الانصهار والإخلاص.
تهدف مهمة إعادة كتابة الحوار إلى إعادة بناء أحدث كلام الحوار عن طريق نسخ المحتوى المفقود من سياق الحوار.حتى الآن، تعاني النماذج الحالية لهذه المهمة من مشكلة المتانة، أي أن يؤدي العروض بشكل كبير عند الاختبار على مجموعة مختلفة.نحن نتطلع إلى هذه القضية المتناقصة من خلال اقتراح نموذج يستند إلى تسلسل الرواية بحيث يتم تقليل مساحة البحث بشكل كبير، ومع ذلك، فإن جوهر هذه المهمة لا يزال مغطى جيدا.كمسألة مشتركة من طرازات العلامات في توليد النص، قد تفتقر مخرجات النموذج إلى الطلاقة.لتخفيف هذه المسألة، نفنق إشارة الخسارة من بلو أو GPT-2 بموجب إطار تعزيز.تظهر التجارب تحسينات هائلة في النموذج لدينا عبر الأنظمة الحالية التي من بين الفنون عند النقل إلى مجموعة بيانات أخرى.
تصف هذه الورقة نظام مقترح لمهمة IWPT 2021 المشتركة بشأن التحليل في التبعيات العالمية المعززة (EUD).نقترح نظام مقرها إعادة كتابة الرسم البياني لحساب التبعيات العالمية المحسنة، بالنظر إلى التبعيات العالمية الأساسية (UD).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا