ترغب بنشر مسار تعليمي؟ اضغط هنا

Momenta: إطار متعدد الوسائط للكشف عن الميمات الضارة وأهدافها

MOMENTA: A Multimodal Framework for Detecting Harmful Memes and Their Targets

654   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

أصبحت ميمات الإنترنت وسيلة قوية لنقل الأفكار السياسية والنفسية والاجتماعية الثقافية. على الرغم من أن الميمات هي روح الدعابة عادة، فقد شهدت الأيام الأخيرة تصعيدا من الأيمن الضارة المستخدمة في التصيد والتبريد الإلكتروني وسوء المعاملة. يكتشف مثل هذه الميمات صعبة لأنها يمكن أن تكون مشفرة للغاية ومخفية. علاوة على ذلك، في حين أن العمل السابق قد ركز على جوانب محددة من الميمات مثل خطاب الكراهية والدعاية، إلا أنه كان هناك القليل من العمل على الضرر بشكل عام. هنا، نحن نهدف إلى سد هذه الفجوة. على وجه الخصوص، نركز على مهمتين: (ط) اكتشاف الميمات الضارة، و (2) تحديد الكيانات الاجتماعية التي يستهدفونها. لقد تمديد مجموعة بيانات الضرر التي تم إصدارها مؤخرا، والتي غطت covid-19، مع ميمات إضافية وموضوع جديد: السياسة الأمريكية. لحل هذه المهام، نقترح الزخم (إطار متعدد الوسائط للكشف عن الميمات الضارة وأهدافها) شبكة عميقة عميقة متعددة الوسائط تستخدم وجهات نظر عالمية ومحلية للكشف عن الميمات الضارة. تحلل الزخم بشكل منهجي المنظور المحلي والعالمي لمنظمة الإدخال (في كلا الطرائق) ويربطها في سياق الخلفية. الزخم هو تفسير ومتعمول، وإظهار تجاربنا أنه يتفوق على العديد من نهج التنافس القوية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تهدف التصنيف متعدد الوسائط واسع النطاق إلى التمييز بين مختلف البيانات متعددة الوسائط، وقد لفت الانتباه بشكل كبير منذ العقد الماضي. في هذه الورقة، نقترح إطارا متعدد المهام في مجال التعلم لمهمة التصنيف المتعدد الوسائط، والتي تتكون من فرعين: فرع متعدد ا لأضوانات متعدد الوسائط وفرع النمذجة متعددة الوسائط المستنتيت بالاهتمام. يمكن أن يتلقى AutoNcoder متعدد الوسائط ميزات متعددة الوسائط والحصول على المعلومات التفاعلية التي تسمى ميزة التشفير متعددة الوسائط، واستخدام هذه الميزة لإعادة تكوين جميع بيانات الإدخال. بالإضافة إلى ذلك، يمكن استخدام ميزة التشفير المتعددة مشروط لإثراء بيانات DataSet RAW، وتحسين أداء مهام المصب (مثل مهمة التصنيف). أما بالنسبة لفرع النمذجة المتعددة الأبعاد القائم على الانتباه، فإننا نوصي أولا آلية الاهتمام لجعل النموذج يركز على الميزات المهمة، ثم نستخدم ميزة التشفير متعددة الوسائط لإثراء معلومات الإدخال، وتحقيق أداء أفضل. نقوم بإجراء تجارب مكثفة على مجموعة بيانات مختلفة، توضح النتائج فعالية الإطار المقترح.
تصف هذه الورقة التقديم الخاص بنا (حظنا الفائز للمهمة A) إلى المهمة المشتركة بشأن الكشف البغيض على WOAH 2021. نحن نبني نظامنا على رأس نظام أحدث لتصنيف ميمي بصرية ثنائي يستخدم علامات الصورة بالفعلمثل العرق والجنس وكيانات الويب.نضيف بيانات تعريف أخرى مث ل العواطف والتجربة مع تقنيات تكبير البيانات، حيث يتم تمييز المثيلات البغيضة في مجموعة البيانات.
في السنوات الأخيرة، أدى الاستخدام الواسع للوسائط الاجتماعية إلى زيادة في جيل من المحتوى السام والهجومي على المنصات عبر الإنترنت. استجابة، عملت منصات وسائل التواصل الاجتماعي على تطوير أساليب الكشف التلقائي وتوظيف المشرفين البشري للتعامل مع هذا الطوفان من المحتوى الهجومي. في حين تم تطبيق العديد من النماذج الإحصائية للحدث من بين الفنون للكشف عن الوظائف السامة، لا توجد سوى عدد قليل من الدراسات التي تركز على الكشف عن الكلمات أو التعبيرات التي تشكل هجوما بعد. هذا يحفز تنظيم مهمة Semeval-2021 5: مسابقة الكشف عن المسافات السامة، التي قدمت المشاركين مع مجموعة بيانات تحتوي على شرح سام يمتد في المشاركات الإنكليزية. في هذه الورقة، نقدم دخول WLV-RIT لمهمة Semeval-2021 5. يحقق نموذجنا الأفضل أداء محول العصبي 0.68 F1 درجة. علاوة على ذلك، نقوم بتطوير إطار مفتوح المصدر للكشف المتعدد اللغات عن الممثل الهجومي، أي القنص، بناء على المحولات العصبية التي تكتشف تمديد السام في النصوص.
الوسائط الاجتماعية هي أداة أساسية لتبادل المعلومات حول أحداث الأزمات، مثل الكوارث الطبيعية. يهدف الكشف عن الحدث إلى استخراج المعلومات في شكل حدث، ولكنه يعتبر كل حدث بمعزل، دون الجمع بين المعلومات عبر الجمل أو الأحداث. تحتوي العديد من الوظائف في أزمة NLP على معلومات متكررة أو تكميلية تحتاج إلى تجميعها (على سبيل المثال، عدد الأشخاص المحاصرين وموقعهم) للاستجابة للكوارث. على الرغم من أن النهج السابقة في أزمة NLP إجمالية المعلومات عبر المشاركات، إلا أنها تستخدم فقط التمثيلات الضحلة للمحتوى (على سبيل المثال، الكلمات الرئيسية)، والتي لا يمكن أن تمثل دلالة لحدث الأزمات وأسفرها بشكل كاف. في هذا العمل، نقترح إطارا جديدا لاستخراج الأحداث الفرعية النقدية من حدث أزمة واسعة النطاق من خلال الجمع بين المعلومات الهامة عبر التغريدات ذات الصلة. يقوم إطارنا أولا بتحويل جميع التغريدات من حدث الأزمات إلى مجموعة من الرسوم البيانية المرتبة الزمنية. ثم تستخرج الرسوم البيانية الفرعية التي تمثل العلاقات الدلالية التي تربط الأفعال والأسماء في 3 إلى 6 رسوم بيانية فرعية عقدة. يفعل ذلك من خلال تعلم الأوزان الحافة عبر الشبكات التنافسية الرسمية الرسمية (DGCNS) واستخراج الرسوم البيانية الفرعية الصغيرة ذات الصلة. تظهر تجاربنا أن هياكلنا المستخرجة (1) هي أحداث فرعية ذات مغزى دلالة و (2) تحتوي على معلومات مهمة لحدث الأزمة الكبيرة. علاوة على ذلك، نظير على أن نهجنا يتفوق بشكل كبير على خطوط الأساس للكشف عن الحدث، وتسليط الضوء على أهمية المعلومات التجميعية عبر تغريدات مهمتنا.
في هذا العمل، نستفيد المعرفة المنوية في شكل مسارات المعرفة لإقامة صلات بين الجمل، كشكل من أشكال تفسير المعرفة الضمنية. يمكن أن تكون هذه الاتصالات مباشرة (مسارات مفردة) أو تتطلب مفاهيم وسيطة (مسارات Multihop). لبناء مثل هذه المسارات تجمع بين نوعين نمو ذجيين في إطار مشترك نسميه Nnect: مصنف علاقة يتنبأ بالاتصالات المباشرة بين المفاهيم؛ ونموذج التنبؤ المستهدف الذي يولد مفاهيم مستهدفة أو متوسطة بالنظر إلى مفهوم مصدر وعلاقة، والتي نستخدمها لإنشاء مسارات Multihop. على عكس العمل السابق الذي يعتمد بشكل حصري على مصادر المعرفة الثابتة، فإننا نستفيد من نماذج اللغة المصنعة للمعرفة المخزنة في Congalnet، لتوليد مسارات المعرفة بشكل حيوي، كشروح من المعرفة الضمنية التي تربط الجمل في النصوص. كمساهمة مركزية نقوم بتصميم إعدادات التقييم اليدوية والآلية لتقييم جودة المسارات التي تم إنشاؤها. نقوم بإجراء تقييمات على رقمين جدليين وإظهار أن هناك مزيج من النوعين النموذجيين يولد مسارات معارف ذات مغزى وعالية الجودة بين الجمل التي تكشف عن المعرفة الضمنية المنقولة في النص.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا