تم إثبات مهام معالجة اللغة الطبيعية (NLP)، بدءا من تصنيف النص إلى جيل النص، من خلال نماذج اللغة المحددة مسبقا، مثل بيرت. هذا يسمح للشركات بإنشاء برامج برت أقوى بسهولة عن طريق تثبيت نماذج Berted Brounded لمهام المصب. ومع ذلك، عندما يتم نشر نموذج Berted Berted كخدمة، فقد يعاني من هجمات مختلفة تم إطلاقها من قبل المستخدمين الضارين. في هذا العمل، نقدم أولا كيف يمكن أن يسرق الخصم خدمة API القائمة على BERT (النموذج الضحية / الهدف) على مجموعات بيانات معطرة متعددة ذات معرفة مسبقة محدودة واستفسارات. نوضح كذلك أن النموذج المستخرج يمكن أن يؤدي إلى هجمات خصومة قابلة للتحويل شديدة ضد نموذج الضحية. تشير دراساتنا إلى أن نقاط الضعف المحتملة لخدمات API القائمة على بيرت لا تزال تعقد، حتى عندما يكون هناك عدم تطابق معماري بين نموذج الضحية ونموذج الهجوم. أخيرا، نبحث في استراتيجيات دفاعتين لحماية نموذج الضحية، وإيجاد أنه ما لم يتم التضحية بأداء نموذج الضحايا، فإن كلا من استخراج النماذج والانتفاخ الخصوم يمكن أن تساوم على نحو فعال النماذج المستهدفة.
Natural language processing (NLP) tasks, ranging from text classification to text generation, have been revolutionised by the pretrained language models, such as BERT. This allows corporations to easily build powerful APIs by encapsulating fine-tuned BERT models for downstream tasks. However, when a fine-tuned BERT model is deployed as a service, it may suffer from different attacks launched by the malicious users. In this work, we first present how an adversary can steal a BERT-based API service (the victim/target model) on multiple benchmark datasets with limited prior knowledge and queries. We further show that the extracted model can lead to highly transferable adversarial attacks against the victim model. Our studies indicate that the potential vulnerabilities of BERT-based API services still hold, even when there is an architectural mismatch between the victim model and the attack model. Finally, we investigate two defence strategies to protect the victim model, and find that unless the performance of the victim model is sacrificed, both model extraction and adversarial transferability can effectively compromise the target models.
المراجع المستخدمة
https://aclanthology.org/
أن تكون شركاء محادثة جيدة، يجب تدريب أنظمة معالجة اللغة الطبيعية (NLP) على إنتاج كلمات مفيدة بشكل سياق. حقق العمل المسبق في تدريب أنظمة NLP بالأهداف القائمة على الاتصالات، حيث يقف المستمع العصبي كشريك اتصال. ومع ذلك، فإن هذه الأنظمة تعاني عادة من الا
تحقق هذه الورقة فيما إذا كانت قوة النماذج المدربة مسبقا على البيانات النصية، مثل Bert، يمكن نقلها إلى تطبيقات تصنيف تسلسل الرمز المميز.للتحقق من قابلية نقل النماذج المدربة مسبقا، نقوم باختبار النماذج المدربة مسبقا على مهام تصنيف النص مع معاني عدم تطا
المعرفة المعنية بالمعالجة المعنية ذات الصلة أمر بالغ الأهمية لدعم تخطيط الإجراءات للمهام المعقدة. على وجه الخصوص، يمكن استخدام معلومات الأدوات بما يمكن القيام به مع أدوات معينة للحد من مساحة البحث التي تنمو بشكل كبير مع عدد خيارات قابلة للحياة. توفر
تصف هذه الورقة النظام الفائز في مرحلة خطوط الأنابيب الطرفية للمهمة NLPConTribeGraph.يتكون النظام من ثلاث نماذج قائمة على بيرت وتستخدم النماذج الثلاثة لاستخراج الجمل والكيانات والألعاب الثلاثية على التوالي.تظهر التجارب أن أخذ العينات والتدريب الخصم يم
المهمة الأساسية في استخراج المعلومات هي اكتشاف الحدث الذي يحدد مشغلات الحدث في الجمل التي يتم تصنيفها عادة في أنواع الأحداث. في هذه الدراسة، يعتبر الحدث وحدة لقياس التنوع والتشابه في مقالات إخبارية في إطار نظام أخبار التوصية. فشلت نهج اكتشاف الحدث ال