ترغب بنشر مسار تعليمي؟ اضغط هنا

التعميم في التعليمات التالية

Generalization in Instruction Following Systems

238   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

إن فهم وتعليمات اللغة الطبيعية في مجال أساسي هي واحدة من السمات المميزة للذكاء الاصطناعي. في هذه الورقة، نركز على فهم التعليمات في المجال العالمي كتل والتحقيق في قدرات فهم قدرات نظامين أفضل أداء للمهمة. نحن نهدف إلى فهم ما إذا كان أداء اختبار هذه النماذج يشير إلى فهم المجال المكاني وتعليمات اللغة الطبيعية بالنسبة إليها، أو ما إذا كانت مجرد إشارات متفوقة في DataSet. نقوم بصياغة مجموعة من التوقعات قد يكون لدى المرء من التعليمات التالية النموذج وتمييز الأبعاد المختلفة المختلفة التي يجب أن تمتلكها مثل هذا النموذج. على الرغم من أداء الاختبار اللائق، نجد أن النماذج الحديثة تنخفض هذه التوقعات وهشة للغاية. بعد ذلك اقترحنا استراتيجية تعليمية تتضمن تكبير البيانات وإظهارها من خلال تجارب واسعة النطاق التي توليها استراتيجية التعلم المقترحة نماذج تنافسية في مجموعة الاختبار الأصلية مع إرضاء توقعاتنا بشكل أفضل.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يتطلب تنفيذ تعليمات اللغة الطبيعية في مجال أساسي جسديا نموذجا يفهم كل من المفاهيم المكانية مثل اليسار من "" وما فوق ""، واللغة التركيبية المستخدمة لتحديد المعالم وتعيين التعليمات المتعلقة بها. في هذه الورقة، ندرس فهم التعليمات في المجال العالمي كتل. بالنظر إلى ترتيب أولي من الكتل وتعليم اللغة الطبيعية، يقوم النظام بتنفيذ التعليمات عن طريق التلاعب بالكتل المحددة. تتألف التعليمات التركيبية للغاية من مكونات ذرية وفهم هذه المكونات خطوة ضرورية لتنفيذ التعليمات. نظرا لأنه أثناء وجود تدريب نهاية إلى نهائي (يشرف عليه موقع الكتلة الصحيحة فقط) فشل في معالجة تحديات هذه المهمة ويعمل بشكل سيء على التعليمات التي تنطوي على مكون ذرية واحدة، يمكن استخدام الإشارات المساعدة الخالية من المعرفة لتحسين الأداء بشكل كبير من خلال توفير الإشراف على مكونات التعليمات. على وجه التحديد، نوفر إشارات تهدف إلى مساعدة النموذج تدريجيا على فهم مكونات التعليمات التركيبية، وكذلك تلك التي تساعدها على فهم المفاهيم المكانية بشكل أفضل، وإظهار فائدةها للمهمة الشاملة لمجموعات البيانات واثنين من نماذج الفن (SOTA)، خاصة عندما تكون بيانات التدريب محدودة --- وهي المعتادة في هذه المهام.
البنية القياسية المستخدمة في التعليمات التالية غالبا ما تكافح على تركيبات رواية من الفئة (E.G. التنقل إلى المعالم أو التقاط الأشياء) لاحظت أثناء التدريب.نقترح هندسة معيارية لاتباع تعليمات اللغة الطبيعية التي تصف تسلسلات فرعية متنوعة.في نهجنا، فروع ال وحدات الفرعية تنفذ كل تعليمات لغة طبيعية لنوع فرعي محدد.يتم اختيار تسلسل من الوحدات النمطية للتنفيذ عن طريق تعلم تقسيم التعليمات والتنبؤ بنوع فرعي لكل شريحة.بالمقارنة مع أساليب التسلسل القياسية وغير المعيارية إلى التسلسل على Alfred، وهي تعليم صعبة بعد المعيار، نجد أن التجديف يحسن التعميم على التراكيب الفرعية الجديدة، وكذلك في البيئات غير المرئية في التدريب.
نقوم بتحليل تغيير اللغة بمرور الوقت في مهمة تعليمية تعاونية وموجهة نحو تحقيق الأهداف، حيث تكثف المرافق تعظيم المشاركين في الاتفاقيات وزيادة خبراتهم.درس العمل المسبق مثل هذه السيناريوهات في الغالب في سياق الألعاب المرجعية، ووجدت باستمرار أن تعقيد اللغ ة يتم تقليلها على طول أبعاد متعددة، مثل طول الكلام، مع تشكيل الاتفاقيات.على النقيض من ذلك، نجد أنه نظرا للقدرة على زيادة المرافق التعليمية، يقوم المدربون بزيادة تعقيد اللغة على طول هذه الأبعاد التي تمت دراستها سابقا للتعاون بشكل أفضل مع أتباع تعليمات ماهرة بشكل متزايد.
على الرغم من تطبيق نماذج التسلسل العصبي للتسلسل بنجاح على التحليل الدلالي، إلا أنها تفشل في التعميم التركيبي، أي أنها غير قادرة على التعميم بشكل منهجي لتركيبات غير مرئية من مكونات المشاهدة. بدافع من التحليل الدلالي التقليدي حيث يتم احتساب التركيز بشك ل صريح من قبل النحو الرمزي، نقترح إطار فك التشفير الجديد الذي يحافظ على التعبير عن النماذج والعمومية من نماذج التسلسل إلى التسلسل مع تضم محاذاة على غرار المعجم ومعالجة المعلومات المنفذة. على وجه التحديد، نقوم بتحلل فك التشفير في مرحلتين حيث يتم وضع علامة على حامل الإدخال أولا مع رموز الدلالية التي تمثل معنى الكلمات الفردية، ثم يتم استخدام نموذج تسلسل إلى تسلسل للتنبؤ بتصميم تمثيل المعنى النهائي على الكلام والعلامة المتوقعة تسلسل. النتائج التجريبية على ثلاث مجموعات بيانات تحليل الدلالات توضح أن النهج المقترح يحسن باستمرار التعميم التركيبي عبر الهندسة النموذجية والنطاقات والإضفاءات الدلالية.
وقد تبين أن الكثير من التقدم الأخير في NLU كان بسبب الاستدلال الخاصة بمواد بيانات التعلم من النماذج.نقوم بإجراء دراسة حالة للتعميم في NLI (من MNLI إلى مجموعة بيانات Hans التي شيدت عدسي) في مجموعة من الهيغات القائمة على Bert (محولات ومحولات سيامي و De viasing Hex)، وكذلك مع إعانة البيانات وزيادة حجم النموذج.نبلغ 2 استراتيجيات ناجحة و 3 غير ناجحة، وكلها توفر رؤى في كيفية تعلم النماذج القائمة على المحولات التعميم.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا