يفترض تكيف المجال أن العينات من المجالات المصدر والمستهدفة يمكن الوصول إليها بحرية خلال مرحلة التدريب.ومع ذلك، نادرا ما يكون مثل هذا الافتراض معقول في العالم الحقيقي وقد يؤدي إلى مشكلات خصوصية البيانات، خاصة عندما تكون تسمية مجال المصدر يمكن أن تكون سمة حساسة كمعرف.مهمة Semeval-2021 تركز 10 على هذه القضايا.نشارك في المهمة واقتراح أطر جديدة بناء على طريقة التدريب الذاتي.في أنظمتنا، تم تصميم أطرتين مختلفتين لحل تصنيف النص ووضع التسلسل.يتم اختبار هذه الأساليب لتكون فعالة والتي تحتل المرتبة الثالثة من بين جميع النظام في التراكب الفرعي، وتحتل المرتبة الأولى بين جميع النظام في SubTask B.
Domain adaptation assumes that samples from source and target domains are freely accessible during a training phase. However, such assumption is rarely plausible in the real-world and may causes data-privacy issues, especially when the label of the source domain can be a sensitive attribute as an identifier. SemEval-2021 task 10 focuses on these issues. We participate in the task and propose novel frameworks based on self-training method. In our systems, two different frameworks are designed to solve text classification and sequence labeling. These approaches are tested to be effective which ranks the third among all system in subtask A, and ranks the first among all system in subtask B.
المراجع المستخدمة
https://aclanthology.org/
تقدم هذه الورقة المهمة المشتركة تتكيف المجال المجانية للمصدر التي عقدت داخل Semeval-2021.كان الهدف من المهمة هو استكشاف تكيف نماذج تعليم الآلات في مواجهة قيود مشاركة البيانات.على وجه التحديد، نعتبر السيناريو حيث توجد التعليقات التوضيحية للنطاق ولكن ل
يعد التكيف المجال المجاني للمصدر خطا ناشئا في أبحاث التعلم العميق لأنه يرتبط ارتباطا وثيقا ببيئة العالم الحقيقي.ندرس مخصصات المجال في مشكلة تسلسل التسلسل حيث يتم تقديم الطراز الذي تم تدريبه على بيانات مجال المصدر.نقترح طريقتين: محول الذات وتدريب المص
تصف هذه الورقة أنظمتنا لإلغاء الكشف عن النفي والتعرف على تعبير الوقت في مهمة Semeval 2021، وتكييف المجال المجاني للمصدر للمعالجة الدلالية.نظرا لأن التدريب الذاتي والتعلم النشط وتقنيات تكبير البيانات يمكن أن يحسن قدرة تعميم النموذج على بيانات المجال ا
قيود مشاركة البيانات شائعة في مجموعات بيانات NLP.الغرض من هذه المهمة هو تطوير نموذج مدرب في مجال المصدر لجعل تنبؤات للمجال المستهدف مع بيانات المجال ذات الصلة.لمعالجة هذه المسألة، قدم المنظمون النماذج التي يتم ضبطها بشكل جيد على عدد كبير من بيانات مج
نظرا للمخاوف المتزايدة لخصوصية البيانات، يجذب تكيف المجال بدون إلغاء تأسيس المصدر المزيد من الاهتمام بالأبحاث، حيث يفترض أن نموذج مصدر مدرب فقط متاحا، في حين تبقى بيانات المصدر المسمى خاصة.للحصول على نتائج التكيف الواعدة، نحتاج إلى إيجاد طرق فعالة لن