ترغب بنشر مسار تعليمي؟ اضغط هنا

ليس هناك تماما بعد: الجمع بين الأنماط التناظرية وشبكات فك تشفير التشفير لانضباط المعقول المعني

Not Quite There Yet: Combining Analogical Patterns and Encoder-Decoder Networks for Cognitively Plausible Inflection

214   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تقدم الورقة أربع نماذج مقدمة إلى الجزء 2 من المهمة المشتركة Sigmorphon 2021 0، التي تهدف إلى تكرار الأحكام الإنسانية على انعطاف أحادي الإكسآت.هدفنا هو استكشاف فائدة الجمع بين الأنماط التناظرية التي تم تجميعها مسبقا مع بنية تشفير فك الترميز.تم تصميم نموذجين باستخدام هذه الأنماط إما في الإدخال أو إخراج الشبكة.نماذج إضافية يتم التحكم فيها لدور التشابه الخام للنماذج المؤذية غير المصنفة للأشكال المصابة الموجودة في نفس خلية النموذج، ودور تواتر نوع الأنماط التناظرية.استراتيجيتنا غير داخلي تماما بمعنى أن النماذج تستأنف فقط البيانات المقدمة من منظمي Sigmorphon، دون استخدام موارد خارجية.تحتل نموذجنا 2 المرتبة الثانية بين جميع الأنظمة المقدمة، مما يشير إلى أن إدراج أنماط تكنولوجية في بنية الشبكة مفيدة في تنبؤات مكبرات الصوت المحاكمة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يمكن تعلم القواعد المورفولوجية ذات مستويات مختلفة من الخصوصية من مثال lexemes عن طريق التطبيق العسكري للحد الأدنى من التعميم (أولبرايت والهايس، 2002، 2003). النموذج الذي يتعلم القواعد فقط من خلال الحد الأدنى من التعميم كان يستخدم للتنبؤ بمتوسط تصنيفا ت اختبار الباحث البشري من الألمانيةوالإنجليزية والهولندية في مهمة SIGMORPHON-UNIMORPH 2021 المشتركة، مع نتائج تنافسية.وقد ثبت بعض الخصائص الرسمية لعملية التعميم الحد الأدنى.تم تطوير طريقة تلقائية لإنشاء محفزات اختبار Wug للتجارب المستقبلية التي تحقق ما إذا كانت التعميمات المورفولوجية النموذجية ضئيلة للغاية.
تم استخدام نماذج ترميز فك التشفير بشكل شائع للعديد من المهام مثل الترجمة الآلية وتوليد الاستجابة.كما ذكرت البحث السابق، تعاني هذه النماذج من توليد التكرار الزائد.في هذا البحث، نقترح آلية جديدة لنماذج تشفير التشفير التي تقدر الاختلاف الدلالي في جملة م صدر قبل وبعد تغذية في نموذج فك التشفير لالتقاط الاتساق بين الجانبين.تساعد هذه الآلية في تقليل الرموز التي تم إنشاؤها مرارا وتكرارا لمجموعة متنوعة من المهام.نتائج التقييم على مجموعات بيانات توليد الترجمة والاستجابة المتاحة للجمهورية توضح فعالية اقتراحنا.
نظرا لفعاليتها وأدائها، اجتذب نموذج الترجمة المحولات اهتماما واسعا، مؤخرا من حيث النهج القائمة على التحقيق. يركز العمل السابق على استخدام أو التحقيق في الميزات اللغوية المصدر في التشفير. حتى الآن، فإن الطريقة التي تتطور فيها ترجمة كلمة تتطور في طبقات المحولات لم يتم التحقيق فيها بعد. ساذجا، قد يفترض المرء أن طبقات التشفير التقاط معلومات المصدر أثناء ترجمة طبقات فك التشفير. في هذا العمل، نظير على أن هذا ليس كذلك: الترجمة تحدث بالفعل تدريجيا في طبقات التشفير وحتى في تضمين المدخلات. أكثر من المستغرب، نجد أن بعض طبقات وحدة فك التشفير المنخفضة لا تفعل ذلك بالفعل فك التشفير. نعرض كل هذا من حيث النهج التحقيق حيث نعلم تمثيلات الطبقة التي تم تحليلها إلى مستوى التصنيف المدربين والمجمد النهائي من وحدة فك الترميز المحول لقياس دقة ترجمة Word. تحفز النتائج التي توصلنا إليها وشرح تغيير تكوين محول: إذا حدث الترجمة بالفعل في طبقات التشفير، فربما يمكننا زيادة عدد طبقات التشفير، مع تقليل عدد طبقات فك ترميز أو زيادة سرعة فك التشفير، دون خسارة في جودة الترجمة؟ تبين تجاربنا أن هذا هو في الواقع الحالة: يمكننا زيادة السرعة إلى عامل 2.3 مع مكاسب صغيرة في جودة الترجمة، في حين أن تكوين التشفير العميق 18-4 يعزز جودة الترجمة عن طريق +1.42 بلو (EN-DE) بسرعة -1.4 1.4.
نحن غالبا ما نستخدم الاضطرابات لتنظيم النماذج العصبية.بالنسبة للكشف عن المشفر العصبي، طبقت الدراسات السابقة أخذ العينات المجدولة (بنغيو وآخرون.، 2015) والاضطرابات الخصومة (SATO et al.، 2019) كشراءات ولكن هذه الطرق تتطلب وقتا حسابيا كبيرا.وبالتالي، فإ ن هذه الدراسة تعالج مسألة ما إذا كانت هذه الأساليب فعالة بما يكفي لتدريب الوقت.قارنا العديد من الاضطرابات في مشاكل التسلسل إلى التسلسل فيما يتعلق بالوقت الحاسوبية.تظهر النتائج التجريبية أن التقنيات البسيطة مثل Hold Dropout (GAL و GHAHRAMANI، 2016) واستبدال عشوائي من الرموز المدخلات يحققون درجات قابلة للمقارنة (أو أفضل) إلى الاضطرابات المقترحة مؤخرا، على الرغم من أن هذه الطرق البسيطة أسرع.
لقد أثبتت التعلم المناهج الدراسية، وهي استراتيجية تدريب الآلة التي تغذي حالات التدريب على النموذج من سهولة الصعب، لتسهيل مهمة توليد الحوار. وفي الوقت نفسه، يمكن أن تسفر عن طريقة تقطير المعرفة، منهجية تحويل المعرفة بين المعلمين وشبكات الطلاب دفعة كبير ة من الأداء لنماذج الطلاب. وبالتالي، في هذه الورقة، نقدم مجموعة من التعلم من المناهج الدراسية وتقطير المعرفة لنماذج جيل الحوار الفعالة، حيث يمكن أن يساعد تعلم المناهج الدراسية في تقطير المعارف من جوانب البيانات والنموذج. للبدء، من جانب البيانات، نقوم بتجميع حالات التدريب وفقا لتعقيدها، والتي تحسبها أنواع مختلفة من الميزات مثل طول الجملة والتماسك بين أزواج الحوار. علاوة على ذلك، فإننا نوظف استراتيجية تدريبية عدائية لتحديد تعقيد الحالات من مستوى النموذج. الحدس هو أنه، إذا كان بإمكان التمييز أن يخبر الاستجابة الناتجة عن المعلم أو الطالب، فسيكون الأمر من الصعب على الحالة أن نموذج الطالب لم يتكيف حتى الآن. أخيرا، نستخدم التعلم الذاتي، وهو امتداد لتعلم المناهج الدراسية لتعيين الأوزان لتقطير. في الختام، نقوم بترتيب منهج هرمي يستند إلى الجوانب المذكورة أعلاه لنموذج الطالب بموجب الإرشاد من نموذج المعلم. توضح النتائج التجريبية أن أساليبنا تحقق تحسينات مقارنة مع خطوط الأساس التنافسية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا