غالبا ما تكون دراسات العلوم الاجتماعية الحاسوبية تحليل المحتوى في كثير من الأحيان داخل التركيبة السكانية القياسية.نظرا لأن التركيبة السكانية غير متوفرة على العديد من منصات وسائل التواصل الاجتماعي (E.G. Twitter)، فقد استنتجت الدراسات العديد من الدراسات التركيبة السكانية تلقائيا.على الرغم من العديد من الدراسات التي تقدم أداء مفهوم العرق والعرق، لا يزال تدريب النظم العملية بعيد المنال لأن هناك بعض البيانات المشروح.مجموعات البيانات الحالية صغيرة وغير دقيقة، أو تفشل في تغطية المجموعات العرقية والأعرقية الأربعة الأكثر شيوعا في الولايات المتحدة.نقدم طريقة لتحديد التقارير الذاتية عن العرق والعرق من أوصاف الملف الشخصي Twitter.على الرغم من ضجيج الإشراف الآلي، فإن مجموعات بيانات التقرير الذاتي لدينا تمكن التحسينات في أداء التصنيف على بيانات مسح التقارير الذاتية القياسية الذهبية.والنتيجة هي طريقة استنساخ لإنشاء موارد تدريبية واسعة النطاق للسباق والعرق.
Computational social science studies often contextualize content analysis within standard demographics. Since demographics are unavailable on many social media platforms (e.g. Twitter), numerous studies have inferred demographics automatically. Despite many studies presenting proof-of-concept inference of race and ethnicity, training of practical systems remains elusive since there are few annotated datasets. Existing datasets are small, inaccurate, or fail to cover the four most common racial and ethnic groups in the United States. We present a method to identify self-reports of race and ethnicity from Twitter profile descriptions. Despite the noise of automated supervision, our self-report datasets enable improvements in classification performance on gold standard self-report survey data. The result is a reproducible method for creating large-scale training resources for race and ethnicity.
المراجع المستخدمة
https://aclanthology.org/
يمكن أن يكون تعيين مواقع المستخدمين إلى البلدان مفيدا للعديد من التطبيقات مثل تحديد الهدوء ومجموعات المؤلف ونظام التوصية وما إلى ذلك. يسمح Twitter للمستخدمين بإعلان مواقعهم كنصا مجانيا، وغالبا ما تكون هذه المواقع المعلنة من المستخدم صاخبة وصعبة للغاي
تحقق هذه الورقة في دمج مصادر المعرفة الجودة التي طورها خبراء المجال الطبي وكذلك المعلومات الأساسية لتصنيف التغريدات إلى أربع فئات مختلفة موجهة نحو الصحة.ندعي أن موارد مثل التسلسل الهرمي للشبكة والمعلومات المتاحة حاليا هي ملحقات فعالة من مجموعات بيانا
في هذه الورقة، نطبق تقطير المعرفة الذاتية لتلخيص النص الذي نقوله أنه يمكن أن يخفف من مشاكل في الحد الأقصى للتدريب احتمالية على مجموعات بيانات مرجعية واحدة وصاخبة.بدلا من الاعتماد على ملصقات توضيحية ذات ساخنة واحدة، يتم تدريب نموذج تلخيص الطلاب لدينا
تشمل النصوص التي تم إنشاؤها من قبل المستخدم أنواعا مختلفة من الخصائص الأسلوبية، أو الضوضاء.لا تتم معالجة مثل هذه النصوص بشكل صحيح من خلال محلل مورفيم الحاليين أو نماذج اللغة القائمة على النصوص الرسمية مثل الموسوعات أو المقالات الإخبارية.في هذه الورقة
في هذه الورقة، نصف إدخال نظامنا للمهمة المشتركة 8 في SMM4H-2021، وهو في التصنيف التلقائي لمرورات سرطان الثدي التي تم الإبلاغ عنها على Twitter.في نظامنا، نستخدم نهج ضبط طراز بلغة قائمة على المحولات لتحديد التغريدات تلقائيا في فئة التقارير الذاتية.علاو