ﻻ يوجد ملخص باللغة العربية
We demonstrate experimentally a new technique to control the bandwidth and the type of frequency correlations (correlation, anticorrelation, and even uncorrelation) of entangled photons generated by spontaneous parametric downconversion. The method is based on the control of the group velocities of the interacting waves. This technique can be applied in any nonlinear medium and frequency band of interest. It is also demonstrated that this technique helps enhance the quality of polarization entanglement even when femtosecond pulses are used as a pump.
Bulk diamond phonons have been shown to be a versatile platform for the generation, storage, and manipulation of high-bandwidth quantum states of light. Here we demonstrate a diamond quantum memory that stores, and releases on demand, an arbitrarily
We demonstrate a technique that allows to fully control the bandwidth of entangled photons independently of the frequency band of interest and of the nonlinear crystal. We show that this technique allows to generate nearly transform-limited biphotons
We demonstrate a wavelength-tunable, fiber-coupled source of polarization-entangled photons with extremely high spectral brightness and quality of entanglement. Using a 25 mm PPKTP crystal inside a polarization Sagnac interferometer we detect a spect
Pairs of photons entangled in their time-frequency degree of freedom are of great interest in quantum optics research and applications, due to their relative ease of generation and their high capacity for encoding information. Here we analyze, both t
In this work we analyze the implementation of a control-phase gate through the resonance between the $|11rangle$ and $|20rangle$ states of two statically coupled transmons. We find that there are many different controls for the transmon frequency tha