ترغب بنشر مسار تعليمي؟ اضغط هنا

Benchmarking quantum control methods on a 12-qubit system

135   0   0.0 ( 0 )
 نشر من قبل Camille Negrevergne
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Negrevergne




اسأل ChatGPT حول البحث

In this letter, we present an experimental benchmark of operational control methods in quantum information processors extended up to 12 qubits. We implement universal control of this large Hilbert space using two complementary approaches and discuss their accuracy and scalability. Despite decoherence, we were able to reach a 12-coherence state (or 12-qubits pseudo-pure cat state), and decode it into an 11 qubit plus one qutrit labeled observable pseudo-pure state using liquid state nuclear magnetic resonance quantum information processors.



قيم البحث

اقرأ أيضاً

We report the preparation and verification of a genuine 12-qubit entanglement in a superconducting processor. The processor that we designed and fabricated has qubits lying on a 1D chain with relaxation times ranging from 29.6 to 54.6 $mu$s. The fide lity of the 12-qubit entanglement was measured to be above $0.5544pm0.0025$, exceeding the genuine multipartite entanglement threshold by 21 statistical standard deviations. Our entangling circuit to generate linear cluster states is depth-invariant in the number of qubits and uses single- and double-qubit gates instead of collective interactions. Our results are a substantial step towards large-scale random circuit sampling and scalable measurement-based quantum computing.
The field of quantum computing has grown from concept to demonstration devices over the past 20 years. Universal quantum computing offers efficiency in approaching problems of scientific and commercial interest, such as factoring large numbers, searc hing databases, simulating intractable models from quantum physics, and optimizing complex cost functions. Here, we present an 11-qubit fully-connected, programmable quantum computer in a trapped ion system composed of 13 $^{171}$Yb$^{+}$ ions. We demonstrate average single-qubit gate fidelities of 99.5$%$, average two-qubit-gate fidelities of 97.5$%$, and state preparation and measurement errors of 0.7$%$. To illustrate the capabilities of this universal platform and provide a basis for comparison with similarly-sized devices, we compile the Bernstein-Vazirani (BV) and Hidden Shift (HS) algorithms into our native gates and execute them on the hardware with average success rates of 78$%$ and 35$%$, respectively. These algorithms serve as excellent benchmarks for any type of quantum hardware, and show that our system outperforms all other currently available hardware.
108 - K. Kakuyanagi , A. Kemp , T. Baba 2015
Quantum feedback is a technique for measuring a qubit and applying appropriate feedback depending on the measurement results. Here, we propose a new on-chip quantum feedback method where the measurement-result information is not taken from the chip t o the outside of a dilution refrigerator. This can be done by using a selective qubit-energy shift induced by measurement apparatus. We demonstrate on-chip quantum feedback and succeed in the rapid initialization of a qubit by flipping the qubit state only when we detect the ground state of the qubit. The feedback loop of our quantum feedback method closed on a chip, and so the operating time needed to control a qubit is of the order of 10 ns. This operating time is shorter than with the convectional off-chip feedback method. Our on-chip quantum feedback technique opens many possibilities such as an application to quantum information processing and providing an understanding of the foundation of thermodynamics for quantum systems.
Being able to quantify the level of coherent control in a proposed device implementing a quantum information processor (QIP) is an important task for both comparing different devices and assessing a devices prospects with regards to achieving fault-t olerant quantum control. We implement in a liquid-state nuclear magnetic resonance QIP the randomized benchmarking protocol presented by Knill et al (PRA 77: 012307 (2008)). We report an error per randomized $frac{pi}{2}$ pulse of $1.3 pm 0.1 times 10^{-4}$ with a single qubit QIP and show an experimentally relevant error model where the randomized benchmarking gives a signature fidelity decay which is not possible to interpret as a single error per gate. We explore and experimentally investigate multi-qubit extensions of this protocol and report an average error rate for one and two qubit gates of $4.7 pm 0.3 times 10^{-3}$ for a three qubit QIP. We estimate that these error rates are still not decoherence limited and thus can be improved with modifications to the control hardware and software.
As quantum circuits increase in size, it is critical to establish scalable multiqubit fidelity metrics. Here we investigate three-qubit randomized benchmarking (RB) with fixed-frequency transmon qubits coupled to a common bus with pairwise microwave- activated interactions (cross-resonance). We measure, for the first time, a three-qubit error per Clifford of 0.106 for all-to-all gate connectivity and 0.207 for linear gate connectivity. Furthermore, by introducing mixed dimensionality simultaneous RB --- simultaneous one- and two-qubit RB --- we show that the three-qubit errors can be predicted from the one- and two-qubit errors. However, by introducing certain coherent errors to the gates we can increase the three-qubit error to 0.302, an increase that is not predicted by a proportionate increase in the one- and two-qubit errors from simultaneous RB. This demonstrates three-qubit RB as a unique multiqubit metric.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا