ﻻ يوجد ملخص باللغة العربية
Within the context of quantum teleportation, a proposed intuitive model to explain bipartite entanglement describes the scheme as being the same qubit of information evolving along and against the flow of time of an external observer. We investigate the physicality of such a model by applying the time-reversal of the Schrodinger equation in the teleportation context. To do so, we first lay down the theory of time-reversal applied to the circuit model and then show that the outcome of a teleportation-like circuit is consistent with the usual tensor product treatment, thus independent of the physical quantum system used to encode the information. Finally, we demonstrate a proof of principle experiment on a liquid state NMR quantum information processor. The experimental results are consistent with the interpretation that information can be seen as flowing backward in time through entanglement.
Simply and reliably detecting and quantifying entanglement outside laboratory conditions will be essential for future quantum information technologies. Here we address this issue by proposing a method for generating expressions which can perform this
Quantum correlations represent a fundamental tool for studies ranging from basic science to quantum technologies. Different non-classical correlations have been identified and studied, as entanglement and discord. In view of future applications in th
Closed timelike curves are striking predictions of general relativity allowing for time-travel. They are afflicted by notorious causality issues (e.g. grandfathers paradox). Quantum models where a qubit travels back in time solve these problems, at t
While all bipartite pure entangled states are known to generate correlations violating a Bell inequality, and are therefore nonlocal, the quantitative relation between pure-state entanglement and nonlocality is poorly understood. In fact, some Bell i
The most general quantum object that can be shared between two distant parties is a bipartite channel, as it is the basic element to construct all quantum circuits. In general, bipartite channels can produce entangled states, and can be used to simul