ﻻ يوجد ملخص باللغة العربية
Weak coherent states as a photon source for quantum cryptography have limit in secure data rate and transmission distance because of the presence of multi-photon events and loss in transmission line. Two-photon events in a coherent state can be taken out by a two-photon interference scheme. We investigate the security issue of utilizing this modified coherent state in quantum cryptography. A 4 dB improvement in secure data rate or a nearly two-fold increase in transmission distance over the coherent state are found. With a recently proposed and improved encoding strategy, further improvement is possible.
A practical quantum key distribution (QKD) protocol necessarily runs in finite time and, hence, only a finite amount of communication is exchanged. This is in contrast to most of the standard results on the security of QKD, which only hold in the lim
Entanglement-measurement attack is a well-known attack in quantum cryptography. In quantum cryptography protocols, eavesdropping checking can resist this attack. There are two known eavesdropping checking methods. One is to use decoy photon technolog
In this thesis we study the finite-size analysis of two continuous-variables quantum key distribution schemes. The first one is the one-way protocol using Gaussian modulation of thermal states and the other is the measurement-device-independent proto
We derive complementarity relations for arbitrary quantum states of multiparty systems, of arbitrary number of parties and dimensions, between the purity of a part of the system and several correlation quantities, including entanglement and other qua
We report an experimental quantum key distribution that utilizes balanced homodyne detection, instead of photon counting, to detect weak pulses of coherent light. Although our scheme inherently has a finite error rate, it allows high-efficiency detec